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Abstract—Recent researches indicate that generalized fre-
quency division multiplexing (GFDM) can be regarded as a
physical layer waveform core. With proper configuration, it
can be used to generate different type of the state of the art
waveforms. The GFDM modulation can be realized by means of
several discrete Fourier transform (DFT) transforms, a complex
multiplier and several memory blocks. However, the conventional
implementations of GFDM were limited by the consideration
of real-valued symmetric prototype pulse shapes, where even
numbers of subcarriers and subsymbols produce singular mod-
ulation matrix. The new design of GFDM prototype pulse shape
allows all combinations of the parameters, which facilitates an
efficient radix-2 implementation. In this paper, we realize a
new field programmable gate array (FPGA) implementation
of GFDM considering radix-2 parameters. We show that our
modem significantly reduces the hardware resource consumption
in comparison with conventional implementations. Moreover, it
provides high throughput, maintains low-latency, and achieves
high accuracy with small fixed-point bit width. Beside that,
this implementation is unified for both the time and frequency
domains. Furthermore, the hardware design provides additional
degrees of freedom with run-time reconfiguration features.

Index Terms—GFDM, hardware implementation, FFT, FPGA,
measurement, fixed-point arithmetic.

I. INTRODUCTION

In generalized frequency division multiplexing (GFDM), the
available band is divided into subcarriers and each subcarrier
is divided into subsymbols. A data symbol modulates a pulse
shape that is generated by means of circular shift in the time
and frequency domains of a prototype pulse shape [1]. With
the degrees of freedom in selecting the number of subcarriers
and subsymbols as well as the pulse shape, GFDM can be
regarded as a flexible waveform that can be adapted for
different requirements. Conventionally, the prototype pulse
shape is designed to be localized in the frequency domain
to reduce the inter-carrier-interference (ICI). Initially, the pro-
totype pulse shape is considered real-valued symmetric, which
poses limitations on the selected parameters. For instance, both
even number of subcarriers and subsymbols are avoided as the
modulation matrix becomes singular [2]. Influenced by that,
the available hardware implementation focuses on odd number
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of subsymbols [3], [4]. In [5], pulse shape design is developed
for different combinations of the parameters. It is shown that
a Hermitian symmetric pulse can be used for even number
parameters, which initiates the idea of radix-2 implementation.

In [6], GFDM is extended beyond its conventional purpose
to cover additional waveforms, such as orthogonal time fre-
quency space (OTFS). It is shown that GFDM can be described
in a unified time and frequency-domain structure that consists
of four steps. First, the data matrix is precoded in columns
and rows with discrete Fourier transform (DFT) matrices. The
pulse shaping is performed in a form of windowing, where
the window is derived from the prototype pulse. Afterwards,
another DFT transform takes place. Finally, the matrix trans-
pose is vectorized into a vector. As a result, the extended
GFDM framework provides additional degrees of freedom by
bypassing one or more stages required by the conventional
one. Moreover, the way the matrix is unfolded to a vector can
be customized. For instance, rearranging the time-domain sam-
ples can simply generate OTFS signal. On the other hand, the
frequency-domain samples can be seen as precoded data that
are allocated to orthogonal frequency division multiplexing
(OFDM) subcarriers. Putting all together, the extended GFDM
provides an efficient tool for waveform design.

The aforementioned features motivate a hardware realiza-
tion of the extended GFDM framework. In this work, we
develop our modem based on the DFT architecture proposed
in [7]. Compared with the convolutional-based implementation
in [4], our modem benefits from serially pipelined structure,
which provides more flexibility for run-time configuration. The
functionality is not limited to the conventional GFDM time-
domain processing, but the modem can be adjusted during
the run-time to perform pure OFDM or DFT-spread-OFDM
efficiently. Moreover, the switching between the time-domain
and frequency-domain modes is straight forward. We measure
the performance in terms of resource usage, latency and
fixed-point accuracy. Although the latency is slightly higher
than the previous implementation in some cases, the resource
usage is significantly decreased. Moreover, our design ensures
that all the components are pipelined to achieve maximum
throughput. Furthermore, the developed core can run at high
clock frequency, which helps in reducing the latency.

The remainder of the paper is organized as follows: Section
II provides a short overview of GFDM and its DFT structure,978-1-7281-3627-1/19/$31.00 c© 2019 IEEE
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which is exploited in the implementation. Section III presents
the field programmable gate array (FPGA) implementation
details. In section IV, we provide performance measurements
regarding the hardware usage, latency, and the normalized
mean squared error (NMSE). Finally, the paper is concluded
in section V.

II. GFDM OVERVIEW

GFDM is a flexible block-based multicarrier modulation
scheme. It provides the user with a time-frequency resource
block, which has a time duration T and bandwidth B for
transmitting a data block with N samples. The available
frequency resource consists of K equally spaced subcarriers
with the subcarrier spacing ∆f = B

K . On the other hand, the
time resource is divided into M equal length segments, which
are called the subsymbols. Thus, the subsymbol spacing is
Tsub = T

M . For a given N = KM , the numerology of a user is
easily changed with the configuration of the parameters K and
M . The conventional GFDM modulation in the time domain
is given by

x[n] =

K−1∑
k=0

M−1∑
m=0

dk,mg [< n−mK >N ] e−j 2πkn
K , (1)

where n = 0, 1, · · · , N − 1 and g [< n−mK >N ] e−j 2πknK

is the time-frequency shifted version of the prototype pulse
shape filter g[n] in the time domain, and dk,m is the data
symbol transmitted on the k-th subcarrier and m-th subsymbol.
Moreover, the modulation in the frequency domain is given by

x[n] =

K−1∑
k=0

M−1∑
m=0

dk,mg̃ [< n− kM >N ] e−j 2πmn
M , (2)

where g̃[n] is the prototype pulse represented in the frequency
domain [1].

A. Matrix representation

In the conventional matrix representation, the GFDM block
is presented by a vector x ∈ CN×1 and its frequency-domain
x̃ = FNx, where FN is the N -DFT matrix. By rearranging
the elements of x in a matrix V

(x̃)
K,M of size K ×M , where

x = vec

{(
V

(x)
M,K

)T}
as in [6], we get the relation

V
(x)
M,K =

1

M
FH

M

(
Z

(g)
M,K �

[
FMDTFH

K

])
, (3)

where [D](k,m) = dk,m ∈ CK×M is the data matrix, and

Z
(g)
M,K = FMV

(g)
M,K is denoted as the modulator window. The

frequency-domain block can be derived by exchanging the
parameters K,M and the DFT direction. Therefore, we get

V
(x̃)
K,M =

1

K
FK

(
Z̄

(g̃)
K,M �

[
FH

KDFM

])
, (4)

where Z̄
(g)
M,K = FH

K V
(g̃)
K,M , and x̃ = vec

{(
V

(x̃)
K,M

)T}
. Accord-

ingly, the GFDM modulator has a unified time and frequency
architecture, as illustrated in Fig. 1. In this diagram, the matrix
Wtx refers to the window either in the time or frequency

domain. The implementation of the modem mainly requires
three DFT/inverse DFT (IDFT) blocks and one complex
multiplication. An additional DFT block is needed for the
frequency-domain processing. The demodulator is realized by
reversing the order of the blocks.

Time-domain

Frequency-domain

Fig. 1: Unified architecture of GFDM modulator.

III. RADIX-2 GFDM MODEM IMPLEMENTATION

In this section, we present the FPGA implementation of the
architecture shown in Fig. 1 using LabVIEW Communications
System Design Suite. Fig. 2 presents the more detailed block
diagram of the modulator and demodulator considering radix-
2 values of K,M parameters. It is worth mentioning that the
component modules of the modulator and demodulator are the
same. These are flexible fast Fourier transform (FFT) module,
scaler module, matrix transpose module, complex multiplier
module, and sample mapping module. The demodulator can
be distinguished from the modulator with the order of the
component modules. Furthermore, all the modules shown
in the block diagram can be switched off independently to
provide the extended flexibility of GFDM. In the following
parts, we focus on the specifications of each component.

A. Flexible FFT Module

The flexible FFT module performs the N -point DFT or
IDFT operation, where N is a radix-2 number ranging from 1
to the GFDM data block size Ndata. The Xilinx FFT intellectual
property (IP) Core is chosen for the DFT operation with size
larger than 8. The bit width of the input samples is set to
22 bits to enhance the accuracy of the implementation. The
architecture mode is set to pipelined steaming I/O mode to
increase the throughput of the implementation. Moreover, the
optimization option is selected to target resource minimization.
For the 2- and 4-point DFT or IDFT operation, an FFT core
is implemented based on the Cooley-Tukey algorithm, which
also has a pipelined structure to maximize the throughput and
reduce the timing requirement of the flexible FFT module.

B. Scaler Module

According to the DFT and IDFT calculation

X[k] =

N−1∑
n=0

x[n]e−j 2πkn
N , x[n] =

1

N

N−1∑
k=0

X[k]ej
2πnk
N ,

the samples at the output of DFT/IDFT can be up to N
times larger than the input samples, which means, in the
radix-2 case, log2N bits are additionally required in order
to represent data at the output without clipping. However,
the bit width of the digital-to-analog converter (DAC) and
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Fig. 2: GFDM modem implementation block diagram.

analog-to-digital converter (ADC) before and after the radio-
frequency (RF) component is limited, thus, the samples need
to be down-scaled after the DFT/IDFT operation to prevent
data clipping. Since the flexible FFT module performs radix-2
FFT operation, a bit shifter is implemented for the data scaling
to reduce the resource consumption.

C. Matrix Transpose Module

Due to the serial data streaming on the FPGA, two methods
are applicable to index the elements in a matrix as visualized in
Fig. 3. One is indexing the matrix column-by-column, defined
as the vectorization of the matrix, and the other is indexing
row-by-row, which is equivalent to vectorizing the transposed
matrix. The matrix transpose on the FPGA is realized by
altering the way to forward the matrix, i.e. to provide the
row-wise upcoming matrix in a column-wise reading or vice
versa. As depicted in Fig. 4, the matrix transpose operation is
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MK-1
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Fig. 3: Matrix indexing column-wise/ row-wise.

achieved by controlling the memory address of the upcoming
elements in the memory. Assuming Q is the length of the row
(column) of a matrix upcoming row-wisely (column-wisely) to
the transpose module, and let P be the length of the column
(row), i.e. P = N

Q , where N is the block size. The address
addr[n] generated by the address counter unit for the n-th
element is given by

addr[n] =< n >Q P + int(
n

Q
) , n = 0, 1, · · · , N − 1, (5)

where < n >Q is the modulo operator representing the index
of the row (column) and int( n

Q ) is the integer division, which
represents the index of the column (row).

Output
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Fig. 4: Block diagram of Matrix Transpose module.

The output condition unit monitors the number of stored
samples and triggers the forwarding process with the calcu-
lated condition to reduce the latency of the matrix transpose
module. As illustrated in Fig. 5, when the (Q(P − 1) + 1)-th
element is being stored in the memory, the (Q−1)-th elements
can be provided to the next stage. Thus, at the moment of
storing the (N −Q−P + 3)-th element, the memory reading
process can be triggered. The bit width of the memory is
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Q(P-1)-1
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Fig. 5: Visualization of output condition.

configured the same as that of the flexible FFT input. With that,
the resource consumption is reduced while maintaining the
accuracy. Moreover, a double-page memory is implemented
to allow the matrix transpose module to store a new matrix
and forward the previous matrix simultaneously, which ensures
the maximum throughput.
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D. Windowing Module

The windowing module is implemented with Xilinx Com-
plex Multiplier IP Core, whose fully-pipelined architecture
maintains the throughput. The bit width of the data is op-
timized, targeting the balance of resource consumption and
processing accuracy. The modulation and demodulation win-
dows for different configurations can be prestored in a memory
to reduce the configuration time.

E. Sample Mapping Module

This module is used to map the generated samples to the
final vector. This implies permutation for the time-domain
samples, whereas it is equivalent to subcarrier allocation for
the frequency-domain samples. The structure of the sample
mapping module is based on that of the matrix transpose
module. However, the addresses in this case are prestored and
can be reconfigured. To facilitate pilot multiplexing, a header
field is added to the address to tell whether the current sample
needs to be read from the pilot source or from the modem
output. Moreover, the sample mapping module supports the
mapping procedure for the multi-user case, where a small size
GFDM modulation in the frequency domain can be performed,
and the blocks of different users are mapped into the final
vector as represented in Fig. 6.

Fig. 6: Mapping for multi-user case.

IV. EVALUATION

In this section, the evaluation of the implementation is
presented, including the hardware usage on the FPGA, the
latency, and the NMSE compared to floating point arithmetic.
All the tests are performed on NI USRP-2954. Moreover, the
maximum block size N = KM of GFDM is set to 2048.

A. Hardware usage

The hardware utilization is evaluated by the LabVIEW
Communications Compile Worker, which uses the Xilinx
Vivado compiler, including the number of registers, digital
signal processor (DSP) units, block RAM, and lookup tables
(LUTs). The hardware usage of modulator alone is presented

in Fig. 7, whereas Fig. 8 presents the total hardware usage of
the modulator and demodulator.

Fig. 7: Hardware usage the modulator.

Fig. 8: Hardware usage of the complete modem.

The flexibility of waveform generation comes with a price,
the proposed implementation consumes more registers com-
pared with the OFDM case, where only two FFT modules
are responsible for the modulation and demodulation. Also,
the DSP consumption is higher, since it has three FFT stages,
and each stage is capable of performing 2048-point FFT to
maximize the flexibility of the implementation.

B. Latency

In this paper, the latency is defined as

Tlatency = Tloading + Tprocessing + Tunloading [clock cycles] , (6)

where Tloading and Tunloading is the loading and unloading time
of a data block into or out of the pipelined module. Tprocessing
is the actual computation time. The theoretical latency of the
implementation performing GFDM time-domain modulation
is given by

TTD = 3N + TK-FFT + 2TM-FFT + 2Ts + Tc + M + 3, (7)

whereas the latency of the frequency-domain modulation is
given by

TFD = 3N + TM-FFT + 2TK-FFT + 2Ts + Tc + K + 3, (8)

where the TN -FFT, Ts, and Tc are the processing latency of the
N -point FFT, the scaler, and the complex multiplier. With the
well-pipelined structure, the implementation can be compiled
with up to 250 MHz clock frequency on Xilinx Kintex-7
FPGA in the USRP. The result of the latency is given in
microsecond using 250 MHz clock on the FPGA. Fig. 9
presents the latency of the GFDM time-domain modulator
alone and the total latency of GFDM time-domain modulator
and demodulator. The latency of generating the frequency-
domain samples can be also derived from Fig. 9, since it only
switches the role of K and M .
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Fig. 9: Latency measurement.

C. NMSE

The NMSE represents the error produced by the fix-point
arithmetic on the FPGA compared with the floating-point
arithmetic on the host computer. The NMSE is given by

NMSE =
E
[
|xref − xFPGA|2

]
E [|xref|2]

, (9)

where xref is the reference result provided by host PC per-
forming floating-point computation, and xFPGA is the result
from FPGA using fix-point. The most critical configuration is
chosen for the NMSE measurement, i.e. all the modules are
switched on and the modulation matrix is set to be a random
matrix. The measured results of the GFDM time-domain
modulator are shown in Fig. 10. The error caused by the fix-

Fig. 10: NMSE of FPGA fixed-point vs floating-point.

point arithmetic can be interpreted as additive noise. The signal
to noise ratio (SNR) is given by the SNR = 1/NMSE. Con-
sidering a system using the quadrature amplitude modulation
(QAM) symbols, the bit error rate (BER) assuming additive
white Gaussian noise (AWGN) is estimated by

Pb,S =
2
(√

S − 1
)

√
Sld (S)

erfc

(√
3

2 (S − 1)
100.1SNR

)
, (10)

where S is the order of the constellation. Form Fig. 10, it can
be seen that the worst BER introduced by the modulation and
demodulation using 256-QAM is negligible.

V. CONCLUSION

Our proposed radix-2 implementation is based on the DFT
based architecture of GFDM. Comparing with the current
designs, it abandons the parallel convolution modules and
converts them into a serial pipelining structure, which reduces
the hardware consumption for the modulation with a larger M
in the time domain. The implementation is accomplished with
LabVIEW communications design suite as an FPGA design.
This implementation supports run-time configuration. It can
be configured as GFDM modulator in the time or frequency
domain during the run-time. Moreover, the components in the
implementation can be enabled or disabled independently to
ensure flexibility. With the extended flexibility, it can provide
the processing of specific configurations such as OFDM and
singe-carrier FDMA (SC-FDMA). The implementation has a
pipelining structure and works with 250 MHz clock frequency
in the USRP, which maximizes the throughput and reduces the
latency.

Also, we provide the evaluation of the implementation,
including the hardware usage, the latency, and the NMSE. Al-
though the implementation consumes more hardware resource
compared with the OFDM system, it can be treated as a phys-
ical layer waveform core and provides more flexibility in run-
time. The maximum latency of the implementation including
GFDM time-domain modulation and demodulation is around
125µs when the GFDM block size is 2048. Furthermore, the
comparison with the floating-point arithmetic shows that the
error caused by the implementation is negligible using the
256-QAM mapping scheme, which is the highest constellation
order of LTE system.
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[2] M. Matthé et al., “Generalized frequency division multiplexing in a gabor
transform setting,” IEEE Commun. Lett., vol. 18, no. 8, pp. 1379–1382,
2014.

[3] M. Danneberg et al., “Flexible GFDM Implementation in FPGA with
Support to Run-Time Reconfiguration,” in 2015 IEEE 82nd Vehicular
Technology Conference (VTC2015-Fall), Sept 2015, pp. 1–2.

[4] TU-Dresden, “Flexible transceiver implementation.” [Online]. Available:
http://owl.ifn.et.tu-dresden.de/GFDM/

[5] A. Nimr et al., “Optimal Radix-2 FFT Compatible Filters for GFDM,”
IEEE Communications Letters, vol. 21, no. 7, pp. 1497–1500, 2017.

[6] A. Nimr et al., “Extended GFDM Framework: OTFS and GFDM Compar-
ison,” in 2018 IEEE Global Communications Conference (GLOBECOM),
Dec 2018, pp. 1–6.

[7] A. Nimr, M. Chafii, and G. P. Fettweis, “Unified low complexity radix-
2 architectures for time and frequency-domain GFDM modem,” IEEE
Circuits and Systems Magazine, vol. 18, no. 4, pp. 18–31, Fourthquarter
2018.

This document is a preprint of: Z. Li, A. Nimr and G. Fettweis, “Implementation and Performance Measurement of Flexible Radix-2 GFDM Modem,” in Proceedings of IEEE
5G World Forum (WF-5G 2019), Dresden, Germany, (pp. 130-134), Sep 2019. DOI:10.1109/5GWF.2019.8911718

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.


