
Communications Signal Processing
Using RISC-V Vector Extension

Viktor Razilov∗, Emil Matúš∗, and Gerhard Fettweis∗†
∗Vodafone Chair Mobile Communications Systems, Technische Universität Dresden, Germany

†Barkhausen Institut, Dresden, Germany
{viktor.razilov, emil.matus, gerhard.fettweis}@tu-dresden.de

Abstract—Flexible and scalable solutions will be needed for
future communications processing systems. RISC-V processors
enhanced with vector processing capabilities as specified by
the soon-to-be ratified RISC-V vector extension (RVV) pose
an interesting base for such systems. Vector processors provide
an efficient means of exploiting data-level parallelism, which is
heavily present in communications kernels. Furthermore, RVV
code is by its design agnostic from the underlying hardware
platform which enables scalability. On the exemplary basis of
a generalized frequency division multiplexing (GFDM) imple-
mentation on a RVV processor, we investigate its baseband
processing capabilities and guide through RVV’s key features
and peculiarities. Our vectorization achieves a speedup of up to
60 times compared to the scalar base case and a throughput
of 784 symbols per second. The utilization of 77 % is slightly
below more specialized solutions. Nevertheless, this work serves
as a baseline for further investigations on flexible and scalable
RISC-V vector communications processors.

Index Terms—Communications processing, GFDM, RISC-V,
Vector processor.

I. INTRODUCTION

Wireless communication is used in an increasingly diverse set
of applications. As the usage scenarios vary, so do the choices
of algorithms and prioritized performance indicators [1]. It is
anticipated that applications of sixth generation (6G) cellular
networks require different minimum latencies and throughputs
whose ranges span 3 or 7 orders of magnitude, respectively
[2]. This diversity puts a higher stress on the flexibility and
scalability of the digital baseband processing hardware.

One technique to accommodate flexibility and performance
is the design of application-specific instruction set processors
(ASIPs) [3]. However, not every application has a market size
that justifies custom chip development and production. Here,
versatile and low-cost programmable processors that achieve
high performance for communications processing are desirable.
Being open, simple, extendable, and supported by popular
open-source compiler toolchains GCC and LLVM, RISC-V [4]
is a promising candidate as the base instruction set architecture
(ISA) of such a system.

There is a working draft of an official RISC-V vector
extension (RVV) [5]. Like many single instruction, multiple
data (SIMD) extensions, it offers a way of efficiently exploiting
data-level parallelism (DLP) [6]. In contrast to packed-SIMD
extensions which have a fixed vector length, RVV is vector
length agnostic (VLA), making it highly scalable. Idiomatic
RVV code runs on any RVV implementation without recoding,

from embedded microcontrollers with short vectors to high-
performance processors with long vectors.

Because communications signal processing tasks often
exhibit considerable DLP, we investigate the feasibility of
RVV for flexible, scalable and efficient execution of such
number crunching tasks. As an example algorithm, we take
generalized frequency division multiplexing (GFDM) [7]. There
exist thorough studies on implementation aspects of GFDM
[8], [9] and implementations on various processing platforms
[8]–[11].

As our contribution, we implement GFDM on RVV and
profile the execution on an open-source RVV processor. We
point out RVV’s peculiarities and performance optimizations
for baseband kernels, such as data memory arrangement
and vector instruction ordering. We assess the impact of
these optimizations and RVV’s throughput and utilization in
comparison to other GFDM solutions.

The rest of the paper is structured as follows: Section II
sheds a light on the background and related work on GFDM
and RVV processors. Afterwards, we describe the steps taken
to implement and optimize GFDM on RVV in Section III. In
Section IV, we evaluate the throughput and compare it to other
GFDM solutions. Section V concludes and makes an outlook
to further research.

II. BACKGROUND AND RELATED WORK

GFDM is a generalization of orthogonal frequency division
multiplexing (OFDM) and considered a candidate waveform for
next generation mobile communication. Compared to OFDM,
it has higher flexibility, reduced out-of-band emission, and
peak-to-average power ratio but also a higher computational
complexity [7], [12]. One low-complexity GFDM approach is
time-domain processing [13], [14], which is the focus of this
paper.

In a GFDM frame, N = MK data symbols are divided into
M subsymbols and K subcarriers with data symbol dk[m] ∈
C being placed on subsymbol m = 0, 1, . . . ,M − 1 of the
subcarrier k = 0, 1, . . . ,K − 1. Each subcarrier is modulated
with a circularly frequency and time shifted version of the
prototype pulse shaping filter g. Thus, one obtains, for n =
lK + i, l = 0, 1, . . . ,M − 1, i = 0, 1, . . . ,K − 1, the GFDM

This document is a preprint of: V. Razilov, E. Matus and G. Fettweis, “Communications Signal Processing Using RISC-V Vector Extension,” in Proceedings of International
Wireless Communications and Mobile Computing Conference (IWCMC 2022), Dubrovnik, Croatia, (pp. 690-695), May 2022. DOI:10.1109/IWCMC55113.2022.9824961

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

signal [8]

x[n] =

K−1∑
k=0

M−1∑
m=0

dk[m]g[(n−mK) mod N]ej2π
kn
K

=

M−1∑
m=0

g[(n−mK) mod N]

K−1∑
k=0

dk[m]ej2π
kn
K

︸ ︷︷ ︸
Dn[m]=F−1{dk[m]}

.
(1)

Hence, time-domain GFDM resolves to an inverse discrete
Fourier transform (IDFT) followed by filtering of the trans-
formed data. The latter consists of 3 nested loops of complex
multiply-accumulation (MAC). As IDFTs have been the subject
of numerous investigations already, we focus on the filtering
part, in line with [8], [10].

The work in [8], [9] provide an in-depth analysis of the filter
computation and its numerical precision requirements, loop
ordering, and vectorization methodology. Based on the insights,
they implement the filter on a vector digital signal processor
(DSP) [8]. An ASIP approach that is optimized for low energy
consumption is presented by [10] and a high-performance
field-programmable gate aray (FPGA) approach by [11].

To the authors’ knowledge, there is no RISC-V-based
GFDM solution in literature. There are, however, wireless-
communications-targeting RISC-V ISA extensions like complex
arithmetic instructions with minimal power overhead [15] or
custom instructions for forward error correction codes [16].
ARM-based platforms have also been used for communications
processing, for example, in conjunction with embedded FPGAs
[17].

ASIPs enhance performance by fusing arithmetic and logic
operations into a single instruction that would otherwise
cost several basic instructions. Another way of minimizing
instruction overhead is SIMD computation, where a single
instruction operates on vectors of data. Currently, two RISC-V
SIMD extensions have gained traction: The packed-SIMD
“P” extension [18] and RVV [5]. Packed-SIMD instructions
explicitly encode the vector length and the data width resulting
in an explosion of the instruction set size and low portability.
RVV on the other hand decouples software from the underlying
hardware by means of a special instruction to dynamically set
the vector length. ARM’s scalable vector extension (SVE) [19]
uses loop predication, to similar effect, with an associated
overhead of around 10 % [20]. In addition, vector processors
tend to decouple the vector length from the number of parallel
computational units. The vector length is determined only
by the size of the vector register file (VRF). Both kinds
of decoupling allow for tradeoffs between area, power, and
throughput such that the hardware can be tuned to the needs
of the application without having to recode the software.

Even though the RVV ratification is as of the time of writing
still a work-in-progress, several RVV platforms for various use
cases have already been published: E.g., Ara [21] and RISC-V2

[22] for high-performance computing, [23] for embedded
microcontrollers, and Vicuna [24] for real-time computing.

1 input: IDFT result D ∈ CN ,
2 duplicated filter coefficients ḡ ∈ C2N

3 output: GFDM signal x ∈ CN

4
5 for l← 0 to M − 1 do
6 for i← 0 to K − 1 do
7 a← 0;
8 for m← 0 to M − 1 do
9 a← a+D[mK + i]ḡ[(M − 1 +m− l)K + i];

10 end
11 x[lK + i]← a;
12 end
13 end

Fig. 1. GFDM scalar variant. g is duplicated in memory to avoid modulo
operations.

1 input: IDFT result D ∈ CN ,
2 duplicated filter coefficients ḡ ∈ C2N

3 output: GFDM signal x ∈ CN

4
5 γ ← 0;
6 ξ ← 0;
7 for l← 0 to M − 1 do
8 δ ← 0;
9 γ ← γ + (M − 1− l)K;

10 k ← K;
11 while k > 0 do
12 i← min(k, nv);
13 ~a← ~0;
14 for m← 0 to M − 1 do
15 ~a← ~a+D[δ . . . δ + i− 1] ◦ ḡ[γ . . . γ + i− 1];
16 δ ← δ +K;
17 γ ← γ +K;
18 end
19 x[ξ . . . ξ + i− 1]← ~a;
20 ξ ← ξ + i;
21 δ ← δ −N + i;
22 γ ← γ −N + i;
23 k ← k − i;
24 end
25 end

Fig. 2. GFDM vector variant. The vector element count nv is given by the
vector length of the platform VLEN divided by the data width wd. D[a . . . b]
denotes the subvector with the elements a to b of vector D, and ◦ the element-
wise product of two vectors.

As a scalable high-throughput example platform, we target Ara
for our investigation.

III. IMPLEMENTATION

A. Vectorization

One scalar variant of a GFDM modulation is given in
Fig. 1. To avoid modulo operations when accessing the filter
coefficients g, they are duplicated in memory by concatenation
ḡ = g.g [10]. Instructions related to the MAC and the two
loads in the innermost loop will be executed M2K and those
related to storing the result MK times.

With vector processing, these repetitions can be greatly
reduced. While there are multiple ways to vectorize the

This document is a preprint of: V. Razilov, E. Matus and G. Fettweis, “Communications Signal Processing Using RISC-V Vector Extension,” in Proceedings of International
Wireless Communications and Mobile Computing Conference (IWCMC 2022), Dubrovnik, Croatia, (pp. 690-695), May 2022. DOI:10.1109/IWCMC55113.2022.9824961

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

...

Memory

...

vld v0

v0

(a)

...

Memory

...

vls v0

v0

(b)

...

Memory

...
...

vlseg2 v0

v0 v1

(c)

Fig. 3. Options for data memory arrangement and vector loading. Real parts are
colored red, imaginary blue. (a) Separated memory arrangement and unit-stride
load. (b) Interleaved memory arrangement and strided load. (c) Interleaved
memory arrangement and unit-stride segment load.

algorithm with different loop orders and vector loop selections,
[8] demonstrated the variant exemplified in Fig. 2 to yield
the highest throughput. It is worthy to note that the algorithm
in Fig. 2 does not assume a specific vector length. In VLA
fashion, it adapts its behavior to any vector element count nv
that is given by the hardware at runtime. nv = VLEN

wd
depends

on the hardware vector length VLEN and the data width wd.
After vectorization, vector load and vector MAC operations

are issued
⌈
M2K
nv

⌉
and vector store operations

⌈
MK
nv

⌉
times.

Control flow instructions related to the middle loop in Fig. 2
occur only

⌈
K
nv

⌉
times. The instruction bandwidth is thus

reduced, especially when nv is high.

B. Number representation

A number representation with finite number of bits needs to
be selected in digital systems. Unlike the scalar RISC-V, where
numbers have a minimum precision of 32 bit, RVV supports
8-, 16-, 32-, and 64-bit fixed-point and floating-point numbers
enabling a tradeoff between precision and throughput. From
the available options, fixed point numbers with wd = 16 bit
precision for D, g, and x and wa = 32 bit for the accumulator
vector ~a for each of the real and the imaginary parts are of
sufficient precision [8]. Before the result x is written to memory,
it is shifted and converted to the format of the input data. Its
width is accordingly wx = wd = 16 bit.

C. Data Memory Arrangement

Vector processors usually offer many powerful ways of vector
loading to serve a diverse set of data arrangements. There
are two usual ways of arranging real and imaginary parts of
complex-number data in memory: separated and interleaved
(c.f. Fig. 3). For real-number vector computing, as in RVV,
we need to hold each part in a different vector register. The
combinations of memory arrangement and corresponding vector
loading in Fig. 3 ensure this condition.

Separated arrangement, as in Fig. 3a, allows unit-stride loads.
For interleaved arrangement, one could issue loads with a stride
of two (c.f. Fig. 3b). But this may underutilize the memory
interface which usually serves contiguous memory segments.
A more suitable alternative is the unit-stride segment load

Listing 1
SIMPLIFIED C CODE FOR THE INNERMOST LOOP IN FIG. 2.

1 // Input: int16_t *Dr, *Di, *gr, *gi;
2 // int N, K;
3 for (int m = 0; m < M; m++) {
4 vld(vDr, Dr); // I
5 vld(vDi, Di); // II
6 vld(vgr, gr); // III
7 vld(vgi, gi); // IV
8 vwmacc(var, vDr, vgr); // V
9 vrsub(vDi, vDi, 0); // VI

10 vwmacc(var, vDi, vgi); // VII
11 vrsub(vDi, vDi, 0); // VIII
12 vwmacc(vai, vDr, vgi); // IX
13 vwmacc(vai, vDi, vgr); // X
14 Dr += K; Di += K; gr += K; gi += K;
15 }

depicted in Fig. 3c, where the consecutive elements are placed
into multiple vector registers in an alternating fashion. This
load utilizes the full memory interface and reduces the number
of instructions as both, the real and the complex part, are
loaded with a single instruction.

To the authors’ knowledge, there is however no RVV
processor supporting segmented load available yet. Therefore,
we only investigate the first two options.

D. Partitioning the VRF

RVV prescribes 32 named vector registers, each containing
VLEN bits. However, we only need 4 of normal length for
the real and imaginary parts of D and g and 2 of double
length for ~a leading to 8 normalized vector registers. We avoid
the resulting VRF underutilization with the register grouping
feature offered by RVV: LMUL consecutive vector registers
are treated as a single vector with the effective element count
n̂v = LMUL× nv. A length multiplier of LMUL = 4 makes
use of the entire VRF.

E. Complex MAC with RVV instructions

Another porting challenge is the lack of complex-number
arithmetic in RVV. The complex MAC (CMAC) can be
emulated with the provided real MAC instructions: To recall,
the CMAC d = a+ bc, a, b, c, d ∈ C is defined by

dr = ar + brcr − bici
di = ai + brci + bicr,

(2)

with dr denoting the real and di the imaginary part of d.
Using the MAC(α, β, γ) = α + βγ operation, (2) resolves
to 4 applications of it:

dr = MAC(MAC(ar, br, cr),−bi, ci)
di = MAC(MAC(ai, br, ci), bi, cr).

(3)

An alternative to negating bi is fused multiply-subtraction
(MSUB). While RVV includes MSUB for the single-width
case (product has same width as factors), it does not for the

This document is a preprint of: V. Razilov, E. Matus and G. Fettweis, “Communications Signal Processing Using RISC-V Vector Extension,” in Proceedings of International
Wireless Communications and Mobile Computing Conference (IWCMC 2022), Dubrovnik, Croatia, (pp. 690-695), May 2022. DOI:10.1109/IWCMC55113.2022.9824961

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

I II III IV

V

VI

VII

VIII

IX X

L
SU

A
L

U
M

U
L

t
tclk

(a)

II

VI

IV

VII

I

IX

VIII

III

X V

L
SU

A
L

U
M

U
L

t
tclk

(b)

Fig. 4. Simplified swimlane diagram of the chaining of different vector
instruction orderings in an in-order vector processor with a load-store unit
(LSU), an arithmetic and logic unit (ALU) and an multiplier (MUL). The
roman numerals refer to the numbering in Listing 1. Each vector instruction
runs for 4 cycles. Instructions in a convoy are colored the same. (a) Naı̈ve
approach. (b) Optimized instruction ordering with availability of functional
units in mind.

widening case (product has twice the width), which is needed
here for precision (c.f. Section III-B).

Listing 1 depicts the resulting code for the innermost loop
in Fig. 2. The real and imaginary parts are kept in separate
memory regions and the data is loaded from memory with
vector unit-stride load. In accordance with (3), we temporarily
negate the imaginary part of one factor. The cycle overhead of
the negations is around 2 %.

Custom complex-number instructions would decrease the
instruction count but would also need to be supported by
dedicated hardware multipliers: Either by optimized complex-
number multipliers (CMUL) besides the real-number multipli-
ers (RMUL) or by additional control logic to rewire 4 RMUL
to a single CMUL.

F. Instruction Ordering

High-performance vector processors perform chaining. An
instruction that consumes the output of its predecessor is started
once the first elements are available—as long as there is no
structural hazard between the instructions. In this case, they
are said to be in a convoy [25]. Since many vector processors
such as Ara execute instructions in order, one needs to keep
structural hazards in mind when ordering instructions.

Fig. 4a illustrates this pitfall by showing the chaining that
results from the instruction ordering in Listing 1. Instructions
I–IV occupy the load-store unit (LSU) and are therefore not
in a convoy. Subsequently, instruction V must wait until IV
began execution even though it could start already once the

Scalar

Strid
ed load -

Näıve Ordering

Unit-s
trid

e load -

Näıve Ordering

Unit-s
trid

e load -

Optim
ized Ordering

105

C
y
cl

es

Fig. 5. Cycle count of GFDM (M = 7, K = 512) on Ara with vector length
VLEN = nvwd = 2048 and nl = 4 lanes.

first data from III is produced. As a result of this ordering,
both, the LSU and the multiplier (MUL), are underutilized.

Fig. 4b presents a better approach where instructions are
reordered such that the requested functional unit alternates.
Utilization rises and the cycle count for the innermost loop is
reduced by almost a third in this model. The performance gain
for the entire kernel will be less because of Amdahl’s law.

G. Hardware Optimization

When analyzing the execution, we noticed a stall between
iterations of the loop in Listing 1 that was caused by an
erroneous hazard detection in Ara. A minor patch lowered
cycle count by 25 %.

IV. EVALUATION

This section contains a cycle count evaluation of the different
GFDM implementation variants detailed in section III. For
measurement, we use register-transfer level simulations of
Ara1 with a slight modification (c.f. section III). We perform
simulations under different configurations of VLEN and nl to
study their impact on the execution time.

A. Throughput

The optimizations described in Section III lead to the cycle
counts plotted in Fig. 5. The base RISC-V execution, that runs
only on Ara’s scalar core Ariane, serves as a reference. It
uses interleaved arrangement because it is more performant
in the scalar case. Vectorizing the code without a change of
the memory layout reduces the cycle count by 57 %. A more
drastic speedup factor of 39 is achieved if one also changes
the arrangement to better suit vector processing. The optimized
instruction ordering detailed in Fig. 4b yields another 12 %
overall performance gain at no cost.

Figure 6 shows the cycle count for Ara configurations with
different number of lanes nl and VLEN. nl can be understood

1Version v2.1.0, See https://github.com/pulp-platform/ara/tree/v2.1.0

This document is a preprint of: V. Razilov, E. Matus and G. Fettweis, “Communications Signal Processing Using RISC-V Vector Extension,” in Proceedings of International
Wireless Communications and Mobile Computing Conference (IWCMC 2022), Dubrovnik, Croatia, (pp. 690-695), May 2022. DOI:10.1109/IWCMC55113.2022.9824961

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

TABLE I
COMPARISON BETWEEN DIFFERENT GFDM SOLUTIONS.

Platform M K
fclk c

fs W Q π β Π P η

[MHz]
[
MSymbols

s

]
[MAC] [B]

[
MAC
cycle

] [
MAC
cycle

] [
MAC
cycle

] [
MAC
cycle

]
[%]

This work—Ariane 7 512 1250 760k 5.9 100k 229k 0.5 8 0.13 0.5 26
This work—Ara nl = 4,
VLEN = 2048

7 512 1250 17.3k 258 100k 215k 8 16 5.8 7.5 77

This work—Ara nl = 16,
VLEN = 2048

7 512 1040 4.76 784 100k 215k 32 64 21 30 71

Low-power ASIP [10] 7 512 100 8.96ka 40 100k 229k 16 32 11 14 80
FPGA [10], [11] 7 512 150 1.57ka 343 — — — — — — —
Vector DSP [8] 7 128 500 504 889 25.1k 53.8k 64 128 56 60 83

aCalculated with (5).

2 4 8 16
nl

0

5

10

15

20

25

30

35

C
y
cl

es
in

th
o
u

sa
n

d
s

VLEN

512

1024

2048

4096

Fig. 6. Cycle count of GFDM (M = 7, K = 512) on Ara under different
vector lengths VLEN = nvwd and number of lanes nl.

as the number of parallel computational units, since every
lane in Ara contains a MUL and an arithmetic and logic unit
(ALU). Both are capable of producing 64 output bits per cycle,
meaning that the MUL executes two widening MACs with our
chosen data widths. Higher nl result in almost proportionally
faster execution of vector instructions, because the majority of
the processing time is spent in the RVV processor.

With less loop iterations comes a smaller looping overhead.
The number of loop iterations is given by

nloop =

⌈
Kwd

LMUL×VLEN

⌉
. (4)

Consequently, higher VLEN increase performance, albeit not as
much as higher nl. From (4), one can infer why VLEN = 4096
brings no further gains: K elements of width wd already fit
into 4× 2048 bits and the additional VRF space is of no use.

The cycle count c translates into communications symbol
rate by

fs = MK
fclk
c

(5)

where fclk denotes the processor’s clock rate—1.25 GHz in
Ara’s case with nl = 4 [21]. As such, Ara with 4 lanes

and 2048 bit in a vector register achieves a symbol rate of
fs = 258 MSymbol

s and 16 lanes increase the symbol rate to
784 MSymbol

s .

B. Utilization

The roofline model [26], [27] is a helpful tool for analyzing
processor utilization. It states that the throughput of an
algorithm may either be limited by the processor’s memory
bandwidth β (measured in B

cycle) or compute bandwidth π

(OP
cycle). The operational intensity I of an algorithm determines

which bound is in force and is given by the ratio [27]

I =
W

Q
(6)

of the number of operations W and the bytes to be read or
written Q. The attainable peak performance is then

Π = min(π, Iβ). (7)

The comparison of the measured performance P to Π reveals
an architecture’s utilization of its available ressources

η =
P

Π
. (8)

For a fair comparison, we take only real MAC operations
into account for the workload:

W = 4M2K. (9)

The memory traffic depends on the quantization that was chosen
for the input data wd and the result wx:

Q = 4M2Kwd + 2MKwx. (10)

In this work, wx is 32 bit in the scalar and 16 bit in the
vectorized case.

The utilization values of different Ariane/Ara configurations
is documented in Table I. As can be seen, the vectorized
versions have not only a higher throughput, but also an
improved utilization. A higher number of lanes decreases
utilization because the scalar instructions’ share of the overall
runtime rises when vector instructions are executed faster.

This document is a preprint of: V. Razilov, E. Matus and G. Fettweis, “Communications Signal Processing Using RISC-V Vector Extension,” in Proceedings of International
Wireless Communications and Mobile Computing Conference (IWCMC 2022), Dubrovnik, Croatia, (pp. 690-695), May 2022. DOI:10.1109/IWCMC55113.2022.9824961

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

C. Comparison

Table I provides a comparison of RVV with other solutions
in literature. Ara with 16 lanes outperforms allmost all the other
in terms of throughput demonstrating its capability of high-
performance number crunching. Only the vector DSP from [8]
surpasses Ara. However, when it comes to utilization, Ara is
slightly lagging, but yet quite impressive for a general-purpose
solution.

V. CONCLUSION AND OUTLOOK

This paper demonstrated a software implementation of
GFDM on a RVV processor. It traced the porting procedure
from algorithm analysis over data structure selection to
programming. We draw attentions to pitfalls involved and
exemplified some beneficial features of RVV. The character-
istics of RVV allow for seamless programming of a wide
range of procesors with different configurations. The vectorized
version achieves a peak throughput of 784 MSymbol

s and a 60
times speedup compared to the scalar version. However, it is
lagging in performance and utilization when compared to more
specialized DSPs.

In future work, we will investigate how the performance of
communications signal processing tasks on RVV can be brought
closer to DSPs—both, by changes to the vector processor’s
microarchitecture and by ISA enhancements. Possible measures
may be implementation of segment load, improved scheduling,
and complex-arithmetic ISA extensions.

ACKNOWLEDGMENT

This work was funded in part by the German Federal Ministry
of Education and Research (BMBF) in the project “E4C”
(project number 16ME0426K).

REFERENCES

[1] M. Jian and R. Liu, “Baseband signal processing for terahertz: waveform
design, modulation and coding,” in IEEE Int. Wireless Communications
and Mobile Computing Conf. (IWCMC), Harbin City, China, Jun. 2021,
pp. 1710–1715.

[2] G. P. Fettweis and H. Boche, “6G: The personal tactile internet - and
open questions for information theory,” IEEE BITS Inf. Theory Mag.,
early access, Oct. 2021, doi: 10.1109/MBITS.2021.3118662.

[3] S. Shahabuddin, A. Mämmelä, M. Juntti, and O. Silvén, “ASIP for 5G
and beyond: opportunities and vision,” IEEE Trans. Circuits Syst., II,
Exp. Briefs, vol. 68, no. 3, pp. 851–857, Jan. 2021.

[4] A. Waterman and K. Asanović, Eds., The RISC-V Instruction Set Manual,
Volume I: User-Level ISA Version 2.1, Document Version 20191213,
RISC-V Foundation, Dec. 2019.

[5] RISC-V “V” Vector Extension, Version 1.0, Sep. 2021. [Online].
Available: https://github.com/riscv/riscv-v-spec/releases/download/v1.0/
riscv-v-spec-1.0.pdf

[6] D. Dabbelt, C. Schmidt, E. Love, H. Mao, S. Karandikar, and K. Asanovic,
“Vector processors for energy-efficient embedded systems,” in 3rd ACM
Int. Workshop Many-core Embedded Systems, Seoul, Republic of Korea,
Jun. 2016, pp. 10–16.

[7] N. Michailow et al., “Generalized frequency division multiplexing for
5th generation cellular networks,” IEEE Trans. Commun., vol. 62, no. 9,
pp. 3045–3061, Sep. 2014.

[8] S. A. Damjancevic, E. Matus, D. Utyansky, P. van der Wolf, and
G. Fettweis, “Towards GFDM for handsets - efficient and scalable
implementation on a vector DSP,” in IEEE 19th Vehicular Technology
Conf. (VTC2019-Fall), Honolulu, HI, USA, Sep. 2019, pp. 1–7.

[9] S. A. Damjancevic, E. Matus, D. Utyansky, P. van der Wolf, and
G. Fettweis, “From challenges to hardware requirements for wireless
communications reaching 6G,” in Multi-processor System-on-Chip 2 -
Applications, L. Andrade and F. Rousseau, Eds., Hoboken, NJ, USA:
Wiley, 2020, pp. 3–29.

[10] R. Wittig, S. A. Damjancevic, E. Matus, and G. P. Fettweis, “General
multicarrier modulation hardware accelerator for the internet of things,”
in IEEE Global Communications Conf. (GLOBECOM), Waikaloa, HI,
USA, Dec. 2019, pp. 1–6.

[11] M. Danneberg et al., “Universal waveforms processor,” in European
Conf. Networks and Communications (EuCNC), Ljubljana, Slovenia, Jun.
2018, pp. 357–362.

[12] A. Darghouti, A. Khlifi, and B. Chibani, “Performance analysis of 5G
waveforms over fading environments,” in IEEE Int. Wireless Commu-
nications and Mobile Computing Conf. (IWCMC), Harbin City, China,
Jun. 2021, pp. 2182–2187.

[13] M. Matthé, L. Mendes, I. Gaspar, D. Zhang, and G. Fettweis, “Precoded
GFDM transceiver with low complexity time domain processing,”
EURASIP J. Wireless Commun. and Netw., vol. 2016, May 2016, Art.
no. 138.

[14] A. Farhang, N. Marchetti, and L. E. Doyle, “Low-complexity modem
design for GFDM,” IEEE Trans. Signal Process., vol. 64, no. 6, Mar.
2016, pp. 1507–1518.

[15] H. B. Amor, C. Bernier, Z. Přikryl, “A RISC-V ISA extension for ultra-
low power IoT wireless signal processing,”, IEEE Trans. Comput., early
access, Mar. 2021, doi: 10.1109/TC.2021.3063027.

[16] M. Tourres, C. Chavet, B. Le Gal, J. Crenne, and P. Coussy, “Extended
RISC-V hardware architecture for future digital communication systems,”
in IEEE 4th 5G World Forum (5GWF), Montreal, QC, Canada, Nov.
2021, pp. 224–229.

[17] H. Saidi, M. Turki, Z. Marrakchi, A. Obeid, and M. Abid, “Implementa-
tion of Reed Solomon encoder on low-latency embedded FPGA in flexible
SoC based on ARM processor,” in IEEE Int. Wireless Communications
and Mobile Computing Conf. (IWCMC), Limassol, Cyprus, Jun. 2020,
pp. 1347–1352.

[18] RISC-V “P” Extension Proposal, Version 0.9.11-draft-20211209, Dec.
2021. [Online]. Available: https://github.com/riscv/riscv-p-spec/blob/
master/P-ext-proposal.pdf

[19] N. Stephens et al., “The ARM scalable vector extension,” IEEE Micro,
vol. 37, no. 2, 2017, pp. 26–39, Mar./Apr. 2017.

[20] A. Pohl, M. Greese, B. Cosenza, and B. Juurlink, “A performance
analysis of vector length agnostic code,” in Int. Conf. High Performance
Computing & Simulation (HPCS), Dublin, Ireland, Jul. 2019, pp. 159–
164.

[21] M. Cavalcante, F. Schuiki, F. Zaruba, M. Schaffner, and L. Benini, “Ara:
a 1-GHz+ scalable and energy-efficient RISC-V vector processor With
multiprecision floating-point support in 22-nm FD-SOI,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst. , vol. 28, no. 2, pp. 530–543, Feb.
2020.

[22] K. Patsidis, C. Nicopoulos, G. C. Sirakoulis, and G. Dimitrakopoulos,
“RISC-V2: a scalable RISC-V vector processor,” in IEEE Int. Symp.
Circuits and Systems (ISCAS), Seville, Spain, Oct. 2020, pp. 1–5.

[23] M. Johns and T. J. Kazmierski, “A minimal RISC-V vector processor for
embedded systems,” in 2020 Forum Specification and Design Languages
(FDL), Kiel, Germany, Sep. 2020, pp. 1–4.

[24] M. Platzer and P. Puschner, “Vicuna: a timing-predictable RISC-V
vector coprocessor for scalable parallel computation,” in 33rd Euromicro
Conference Real-Time Systems (ECRTS), Dagstuhl, Germany, Jun. 2021,
pp. 1:1–1:18.

[25] J. L. Hennesy and D. A. Patterson, Computer Architecture - A Quantitative
Approach, 6th Ed., San Mateo, CA, USA: Morgan Kaufmann, 2019.

[26] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful
visual performance model for multicore architectures,” Commun. ACM,
vol. 52, no. 4, Apr. 2009, pp. 65–76.

[27] G. Ofenbeck, R. Steinmann, V. Caparros, D. G. Spampinato, M. Püschel,
“Applying the roofline model,” in IEEE Int. Symp. Perf. Anal. Syst. Softw.
(ISPASS), Monterey, CA, USA, Mar. 2014, pp. 75–85.

This document is a preprint of: V. Razilov, E. Matus and G. Fettweis, “Communications Signal Processing Using RISC-V Vector Extension,” in Proceedings of International
Wireless Communications and Mobile Computing Conference (IWCMC 2022), Dubrovnik, Croatia, (pp. 690-695), May 2022. DOI:10.1109/IWCMC55113.2022.9824961

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

