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Abstract—Enhancing the connectivity reliability is one
of the most challenging requirements for the design of
future wireless communications systems. The scope of this
paper is to leverage the existing tool set of reliability theory
for enabling reliable communication in wireless systems.
Definitions, concepts, and methods of reliability theory
are applied and extended to wireless communications
networks, which are modeled as a repairable system. The
steady-state and transient system behaviour are consid-
ered. Two new key performance indicators (KPIs) for the
reliability analysis of wireless communications systems are
introduced, namely mean time to first failure (MTTFF)
and interval reliability (IR), and a closed form expression
is derived for the MTTFF. By evaluating an exemplary
scenario, the trade-off between availability, reliability and
throughput is discussed.

Index Terms—5G, availability, interval reliability, mean
time to first failure, reliability theory, URLLC.

I. INTRODUCTION

One main objectives of the fifth generation (5G)
of mobile communications systems is the support of
diverse applications in a flexible and reliable way. The
requirement dimensions comprise enhanced throughput,
massive number of devices, and latency as well as
connectivity reliability [1], [2]. Apart from enhanced
Mobile Broadband (eMBB) and massive Machine Type
Communications (mMTC), ultra-reliable low-latency
communications (URLLC) is the third pillar of 5G
networks. Possible use cases comprise, e.g., autonomous
driving, industrial automation, robotics, health care,
and mission-critical applications in IoT [3]. However,
terms such as "availability" and "reliability", which are
often used in the context of 5G research have not yet
been unambiguously related to fundamental metrics of
reliability theory and are used interchangeably. This can
be noticed by comparing [1], [4], [5], [6].
Hence, this paper proposes to apply and adapt already
existing definitions and concepts of reliability theory to
wireless communications systems. We clearly identify
and emphasize important differences and highlight po-
tential causes of confusion.
Hereby, a wireless communications scenario for factory
automation is considered, one of the URLLC use cases
of 5G. Particularly, in this scenario high demands on
availability and reliability of connectivity are to be met
in order to control industrial automation applications in

real time, requiring a maximum packet loss rate (PLR)
of 10−9, which can be interpreted as a downtime of
32 µs over the course of one year.
One approach to satisfy the requirements of industrial
automation with regard to cost-effectiveness and world-
wide applicability is to develop wireless communica-
tions solutions, which can be operated in unlicensed
frequency bands. The major challenge in this context,
however, is the coexistence management of these un-
licensed frequency bands. Thus, with respect to the
strict reliability requirements, it is of special interest to
determine the opportunities and the theoretical limits of
this approach by means of reliability theory.

Reliability theory involves the development of math-
ematical methods in order to evaluate the reliabil-
ity, maintainability, availability, and safety of technical
components, equipment, and systems [7]. Basic fun-
damentals of reliability theory were introduced in the
1960s, e.g., in [8]. Reliability theory has developed
well accepted definitions and concepts, which can also
be applied to communications. Contributions include
the assessment of reliability and performance of com-
puter systems by means of probabilistic, discrete-state
models [9], and examination of security aspects of
communications systems from a reliability engineering
perspective [10]. First approaches of adopting reliability
theory concepts in order to enhance the reliability of
cognitive radio networks are presented in [11]. However,
metrics such as reliability, blocking probability, or mean
time to first failure remain unmentioned. Instead, the
authors only consider the steady-state probability of
channel availability instead of investigating transition
probabilities between operational and failed states.

The contributions of this paper are:

• Comparative summarization of fundamental reli-
ability theory definitions, which are of special
interest for research on URLLC in the context of
5G, and their adaptation to wireless systems.

• Proposal of the new key performance indicators
(KPIs) mean time to first failure and interval
reliability for the reliability analysis of wireless
communications systems.

• Application of concepts of reliability theory to the
system design of wireless communications sys-
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tems, i.e., how to
– model a wireless communications system as a

repairable system based on a continuous time
Markov process with a finite discrete state
space, and

– introduce redundancy in order to improve
availability and reliability.

• Evaluation of an exemplary scenario capturing
the trade-off between availability, reliability and
throughput. This significantly helps for the design
of future wireless systems.

II. NOTATION

Throughout this paper the following notation is used.
Bold Latin capital letters represent matrices and vectors.
Unless otherwise specified, row vectors, denoted as
X = [Xj ]

n
j=0, are used. The column vector of all

ones is expressed by 1. The zero matrix of deducible
size is denoted by 0. Subscripts indicate sub-matrices
of the corresponding size. The matrix exponential of a
square matrix X is defined as exp (X) =

∑∞
i=0

1
i!X

i,
where X0 corresponds to the identity matrix I . The
Laplace transform of a function F (t) is denoted as
F ∗(s) = L{F (t)}. The derivative of a function F (t)
with respect to time t is represented by Ḟ (t). Variables
based on acronyms are not printed in italics to avoid
confusion with multiplication. The probability that an
event E occurs is expressed by P {E}.

III. RELIABILITY THEORY AND DEFINITIONS OF
PARAMETERS

Reliability theory has been introduced as a tool to
analyze the life cycles and failures of technical systems.
Important quantities used in reliability theory, e.g. avail-
ability, reliability, are expressed by probabilities and
time durations. A common condition for all quantities
is that the considered item is operational at time t = 0.
The usual notion is that "up" is used for an operating
state and "down" refers to a failed state, i.e., in repair if
repairable. An item in wireless communications can be
interpreted, e.g, as a component of a system, a system
itself, a service or a wireless channel.

A. Availability

According to [12], an item is available, if it is in a
state to perform a required function at a given instant
of time or at any instant of time within a given time in-
terval, assuming that the external resources, if required,
are provided. On this basis the following availability
quantities are derived in reliability theory.

The instantaneous availability A(t), defined as [7]

A(t) = P {"item is up at time t"} , (1)

is the probability that the item is operating at a given
instant of time t. Thus, it is also called point availability.

The steady-state availability A, defined as

A = lim
t→∞

A(t) , (2)

enables to investigate the long-term probability that an
item is available, which is one of the most important
KPIs in reliability engineering. In literature, steady-state
availability is often abbreviated with simply availability
[7]. The steady-state availability can also be interpreted
as the mean proportion of time the item is operational.

A quantity often used to specify reliability require-
ments in communications systems is PLR [5]. Strictly,
the PLR characterizes the steady-state unavailability

Ā = 1−A (3)

because it can be interpreted as the long-term probability
the item is not operational.

B. Reliability

According to [12], reliability is defined as "the prob-
ability that an item can perform a required function
under stated conditions for a given time interval." The
reliability

R(t) = P {"item is up throughout interval [0, t]"} (4)

refers to failure-free operation of the item during an
interval starting at time t = 0. It is also referred to as
survivor function because it is the probability that the
item survives the time interval [0, t] and is still function-
ing at time t [13]. In the absence of repairs, adequate
performance at time t implies adequate performance
during [0, t] [8]. Thus, the instantaneous availability
A(t) is equal to the reliability R(t) of an item in the
special case of no repairs. In general, the relation A(t) ≥
R(t) holds. In contrast to the concept of availability,
the limiting value of R(t) as t approaches infinity is
given by limt→∞R(t) = 0, whereas the steady-state
availability (2) is nonzero except for the special case of
no repairs [14]. Hence, referring to reliability without a
time reference does not correspond to a valid statement.
Moreover, in general, it is not possible to convert
between reliability and steady-state availability because
reliability changes over time whereas the steady-state
availability is not time dependent. Therefore, adopting
the definition of reliability to wireless communications
systems is not obvious since reliability characterizes
the probability that an item stays operational during
the whole time interval starting with its instantiation
and ending at a specified time t. In wireless systems,
however, the reliability is defined as the amount (in %)
of sent network layer packets successfully delivered to
a given node within the time constraint required by the
targeted service, divided by the total number of sent
network layer packets [6]. Referring to instantiation is
plausible in the context of traditional reliability engi-
neering evaluating the lifetime of actual items, such as
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electric devices or factory plants. However, this does not
relate to any common KPI in wireless communications
systems. Thus, the metric reliability is often mixed with
availability. Please note, that, e.g., PLR relates to the
concept of availability instead of reliability.

Closely related to reliability is the definition of mean
time to first failure (MTTFF) because this parameter
characterizes the average duration an item will operate
before the first failure occurs [14]. The MTTFF can be
determined by [13]

MTTFF =

∫ ∞
0

R(t)dt . (5)

This metric is also often referred to as mean time to
failure (MTTF) [14]. However, this may cause confusion
to different quantities, such as mean up time or mean
time between failures, especially if repairs are permitted
[13].

We introduce the MTTFF as a new and promising
KPI in the context of wireless communications systems,
because this metric links reliability analysis with the
time dimension, which is of particular importance to
the 5G use case URLLC.

C. Interval Reliability

A quantity linking the concepts of reliability and
availability is the interval reliability, because it is the
probability that the considered item is operating at a
specified time t and will continue to operate for an
interval of duration ∆t [8]:

IR(t,∆t) = P {"item is up throughout [t, t+ ∆t]"} .
(6)

Thus, the reliability R(t) and the availability A(t)
functions are equal to the following special cases of
interval reliability

A(t) = IR(t, 0) , (7)
R(t) = IR(0, t) . (8)

We propose to apply the KPI interval reliability to
wireless communications systems, because it character-
izes the probability that the system keeps operational
during an arbitrary time interval. This is completely
different from the reliability definition by 3GPP which
can be interpreted as the mean proportion of time
packets are successfully delivered [6].

D. Redundancy

In reliability theory, a system is often modelled to
be composed of n components. One way to improve
availability and reliability of a system is to introduce re-
dundancy, i.e., employ one or more reserve components.
A common assumption is the confinement to situations
where it suffices to consider only a functioning state and
a failed state for each component as well as the system

[13]. A generic notation to express the concept of redun-
dancy is the k-out-of-n (koon) structure. It characterizes
a system which is functioning if and only if at least k
of the n components are operational [15]. This can be
illustrated by a reliability block diagram showing the
logical connections of components necessary to fulfill
the system function: A parallel structure corresponds to
1oon realizing full redundancy whereas noon refers to a
series structure without redundancy, which is visualized
in Fig. 1. In wireless systems systems these components
may reflect channels or links.

IV. SYSTEM MODEL

A wireless communications system is considered
comprising access points (APs), each communicating
with a certain number of users. We assume a superordi-
nate unit, the network manager (NM), connected to all
APs in order to enable reliable wireless connectivity, e.g.
by managing the coexistence of various unlicensed ISM
frequency bands in a factory automation environment.
The NM is considered to be equipped with mechanisms
for dynamic selection of available frequency resources
on the basis of spectrum sensing. The system is con-
sidered to operate in unlicensed frequency bands. Thus,
co-channel interference is an important wireless access
issue addressed by this paper. We assume, that an
AP must leave a channel once an interferer begins to
transmit over the same channel. Since the NM is able to
prevent interference among the APs, this paper focuses
on the special case of multiple interferers and one AP.
Fading is neglected for simplicity.

From the AP’s viewpoint, the considered system can
be translated to terms of reliability theory. To do this,
we identify channels with components according to the
following:

failed component ↔ blocked channel by interferer
repaired component ↔ released channel by interferer

The AP has the capability to sense all n channels
and transmit over an arbitrary number of channels
k = 1, 2, . . . , n channels simultaneously. This meets the
general koon redundancy concept in reliability theory.
Single connectivity relates to k = 1, whereas k > 1
implies multi-connectivity.

1 2 . . . n

(a) Series structure, noon

n

· · ·
2

1

(b) Parallel structure, 1oon

Fig. 1. Reliability block diagram for series and parallel structure
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Continuous time Markov models with a finite discrete
state space are a standard tool used to describe a
system’s temporal behaviour in many fields of reliability
engineering [16]. Thus, the considered wireless commu-
nications system is modelled from the AP’s viewpoint
as an irreducible, homogeneous Markov process. Let
the finite system state j reflect the number of channels
blocked by interferers. Hence, a system with n channels
has n+1 states. System state j is increased by one when-
ever a free channel becomes blocked by a interferer and
decreased by one when a blocked channel is released.
The state space is partitioned into the set of "up" states
U and the set of "down" states D according to

U = {0, 1, . . . , n− k} , (9)
D = {n− k + 1, n− k + 2, . . . , n} (10)

with the cardinalities

U = |U| = n− k + 1 , (11)
D = |D| = k . (12)

Furthermore, the system investigated in this paper is
based on the following assumptions:
• The interferer’s arrival rate λ is the AP’s channel

failure rate.
• The interferer’s service rate µ is the AP’s channel

repair rate.
• The rates λ and µ are constant and independent,

where λ and µ being constant correspond to an
equal probability at all times for an interferer to
appear or leave, respectively.

• Every interferer’s arrival and leaving is self-
revealing. This means that the NM will sense
the experienced interference at at all times and
immediately recognizes a state-change.

• A released channel is "as good as new". Switching
is perfect and immediate, i.e., if a channel used by
a AP becomes blocked, the AP’s complete traffic
will be transmitted over an alternative free channel
without delay or loss of information.

• No bursts are considered, i.e., the probability that
more than one channel is blocked or released at
the same time is negligible and no state can be
skipped.

The resulting birth-death Markov process is visual-
ized in Fig. 2. The state equations are expressed by

Ṗj(t) = λj−1Pj−1(t)− (λj + µj)Pj(t) + µj+1Pj+1(t)

for j = 0, 1, . . . , n , (13)

where Pj(t) is the state probability that j channels in the
system are blocked at time t, the first derivative of Pj(t)
with respect to time is denoted by Ṗj(t) and Pj(t) ≡ 0
for j < 0 or j > n [15]. The differential equations (13)
may be written in matrix terms as

Ṗ (t) = P (t) ·M , (14)

with the tridiagonal transition matrix M , the state prob-
ability vector P (t), and the state probability derivative
vector Ṗ (t).

Considering the introduced assumptions, the system
transition parameters of the target wireless communica-
tions scenario are summarized as:

λj = λ for 0 ≤ j < n , (15a)
µj = jµ for 0 < j ≤ n , (15b)

assuming λ, µ ∈ R+.

V. DETERMINATION OF RELIABILITY QUANTITIES

In this section, we apply the initially stated definitions
of fundamental reliability quantities to the introduced
wireless communications scenario from the AP’s view-
point. A wireless communications system is hereby
modeled as a repairable system. The general concept of
koon redundancy is taken into account as well because
all determined metrics depend on k, the number of
channels a AP requests simultaneously. The case of
single connectivity, equivalent to k = 1, simplifies the
following metrics. The steady-state is considered as well
as the transient system behaviour.

A. Steady-State Availability

The wireless communications system is instanta-
neously available if it is in one of the system up states
aggregated in U . Thus, the instantaneous availability of
the considered Markov process is defined as

Ak(t) =
∑
j∈U

Pj(t) =

n−k∑
j=0

Pj(t) . (16)

The state probabilities Pj(t) is obtained by solving the
differential equations (14). In many applications only
the steady-state situation is of interest. The steady-state
availability of the system results as:

Ak =
∑
j∈U

Pj =

n−k∑
j=0

Pj , (17)

with the steady-state probabilities Pj = limt→∞ Pj(t).
We apply transition rates (15) for the introduced

scenario to the steady-state probabilities for birth-death
Markov processes [17], obtaining

Pj =
ρj

j!
·

[
1 +

n∑
`=1

ρ`

`!

]−1
(18)

0 1 2 . . . n

λ0 λ1 λ2 λn−1

µnµ3µ2µ1

Fig. 2. Birth-Death Markov Process based on [14]
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with the ratio ρ = λ/µ. Thus, as a contribution of
this paper, it is determined that for the considered wire-
less communications scenario the steady-state probabil-
ities and consequently the AP’s steady-state availability
purely depend on the ratio ρ instead of the actual rates
λ and µ under the specified conditions:

Pj = f(ρ)⇒ Ak = g(ρ) . (19)

The complement of the system availability Ak is the
system unavailability given by

Āk =1−Ak =
∑
j∈D

Pj =

n∑
j=n−k+1

Pj . (20)

It may be interpreted as an important KPI in the con-
text of wireless communications, e.g., channel blocking
probability or PLR caused by interference.

B. Reliability

To determine the reliability function of the considered
system model, all failed states are assumed to be absorb-
ing because the concept of reliability characterizes the
probability that a system does not leave the set U of up
states during the time interval [0, t] [15]. By setting the
transition rates from the failed states equal to zero, we
derive the modified Markov process with the transition
rates showed in Fig. 3. Similarly to eq. (14), the state
equations can be summarized as

˙̂P (t) = P̂ (t) · M̂ . (21)

Solving these differential equations leads to the state
probabilities P̂j(t) of the modified Markov model. On
this basis, the reliability function is obtained as

Rk(t) =
∑
j∈U

P̂j(t) =

n−k∑
j=0

P̂j(t) . (22)

The AP’s reliability Rk(t) is a time dependent function
converging to zero. Thus, referring to a reliability value
without specifying parameter t is not a valid statement.

C. Mean Time to First Failure

Since the MTTFF is defined as the improper inte-
gral (5) it can be determined using Laplace transforma-
tion of the reliability function and subsequently setting
the Laplace parameter to zero [13].

R∗k(s) = L{Rk(t)} =

∫ ∞
0

Rk(t) exp(−st) dt . (23)

0 1 . . . n− k
n− k

+1

λ0 λ1 λn−k−1 λn−k

µn−kµ2µ1

Fig. 3. Modified Birth-Death Markov Process

→ MTTFFk = R∗k(0) =

∫ ∞
0

Rk(t) dt . (24)

This paper presents the following closed form expres-
sion of the MTTFF for the considered koon structure:

MTTFFk =
1

λ

n−k∑
j=0

ρj−n
n−j∑
`=k

ρ`
n−j−1∏
i=`

(n− i) , (25)

assuming that all n channels are available at t = 0.
This can be proven by inserting the summands of

statement (25), denoted by

Sj =
1

λρn−j

n−j∑
`=k

ρ`
n−j−1∏
i=`

(n− i) , (26)

for each component P̂ ∗j (0) of P̂ ∗(0) in the equations

−P (0) = P̂ ∗(0) · M̂ , (27)

which correspond to the Laplace transforms of equa-
tions (21) with s = 0, resulting from eq. (22) with (24) .

As a further contribution of this paper, we emphasize
that, in contrast to the steady-state availability Ak, the
AP’s MTTFFk depends on ρ and λ:

MTTFFk = h(ρ, λ) . (28)

We propose to introduce the KPI MTTFFk to the
research on wireless communications because this met-
ric enables to evaluate the reliability of the wireless
communications system from the AP’s viewpoint taking
into account the actual rates λ and µ. In contrast to the
AP’s reliability function (22), specifying an instant of
time is not necessary.

D. Interval Reliability

A closed form expression of the interval reliability
for Markov models is given by [16]

IR(t,∆t) = P (0) exp(tM)

(
IUU

0DU

)
exp(∆tMUU )1U .

(29)
The considered Markov process starts at time t = 0
according to the initial probability vector P (0).

We believe that the interval reliability in many cases
mixed with the reliability metric, whereas it describes
the likelihood not to experience a failure during a freely
chosen time period [t, t+ ∆t], which strongly relates to
the reliability definitions in wireless systems in various
standardization bodies. Interval reliability can be applied
before a transmission is initiated and it can be evaluated
recurrently for every individual transmission, to give the
sender (or sending application) an indication about the
success rate of that undertaking. The application can
then decide for itself if the success probability is high
enough or not, e.g., by comparing it to an application
specific threshold value. This way, resource wasting
(transmission attempts due to an unknown network
status with high risk of failure) can be avoided.
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Ā2

Ā3
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Fig. 4. Steady-state probabilities, steady-state unavailability, n = 5

We propose to apply the KPI "interval reliability"
to wireless communications, because it generalizes the
concept of reliability from considering intervals starting
at t = 0 to arbitrary intervals, which correspond to a
more realistic evaluation intent in the context of wireless
communications systems.

VI. EVALUATION SCENARIO AND RESULTS

In this section, the introduced reliability quantities are
evaluated for an exemplary scenario. These include
• steady state availability,
• transient behaviour of availability, reliability, and

interval reliability.
We assume n = 5 independent wireless channels as an
example. An AP is able to sense all of them and transmit
over an arbitrary combination, i.e., k = 1, 2, . . . , n. The
considered wireless access issue is co-channel interfer-
ence between interferers and the AP using the same
transmission frequency.

The results regarding the steady state with respect to
ρ are shown in Fig. 4. The lines represent the steady-
state unavailabilities Āk and the differences between
the lines correspond to the steady-state probabilities Pj

(as shown exemplary for ρ = 10−2). Higher degrees
of redundancy, which are equivalent to smaller values
of k, reduce the steady-state unavailability. The figure
shows that introducing redundancy improves availability
especially for small values of ρ.

Interpreting the steady-state unavailability as PLR,
as assumed in this paper, enables system design rec-
ommendations with respect to the expected ratio ρ of
a considered environment. These results facilitate the
numerical trade-off analysis between throughput and
availability (with throughput being modeled as a linear
function of channels used for transmission). For the
exemplary value of ρ = 10−2 using k = 2 chan-
nels simultaneously instead of k = 1 means doubled
throughput but availability decreases by a factor > 100.

The instantaneous availability and reliability are plot-
ted in Fig. 5 over time normalized to λ for the exemplary
value of ρ = 2 (chosen for good readability) . At t = 0
all values are equal to one because it is assumed that

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

t · λ

A
k
(t

),
R

k
(t

)

Ak(t)

Rk(t)

k = 1

k = 2

k = 3

k = 4

k = 5

Fig. 5. Instantaneous availability and reliability, n = 5, ρ = 2

all channels are free at system start. As expected, the
instantaneous availability as well as the reliability are
higher for smaller values of k because of redundancy.
It is shown that Ak(t) ≥ Rk(t) and the fact that
the instantaneous availabilities Ak(t) converge to the
steady-state availability Ak = limt→∞Ak(t) while the
reliabilities Rk(t) converges to zero for t → ∞. Here,
the absolute values of λ and µ (as opposed to only their
ratio ρ) influence how fast these limits are approached.

Consequently, the MTTFF also depends on the ac-
tual values of λ and µ as Table I demonstrates for a 4oo5
system. Hence, a system is conceivable with a fixed
steady-state availability Ak but the MTTFFk may vary
by several orders of magnitude. The obtained constant
steady-state unavailability Ā4 is low but the MTTFF4,
derived by the reliability function according to eq. (25),
varies between 1 s and more than 11 days.

The MTTFFk, normalized to λ, is shown in Fig. 6
for k = 1, 2, . . . , n. Similar to the steady-state availabil-
ity, the MTTFFk is higher for larger degrees of redun-
dancy, i.e., for smaller values of k. For smaller values of
ρ the differences increase and the impact of redundancy
is higher. In the special case of no redundancy for k = n
(the AP needs all resources), the MTTFFk reduces to
MTTFFn = 1/λ. It is independent of µ because the
first channel blockage causes a failure for the AP.

Interval reliability represents a reliability metric for
arbitrary interval start times and durations. This is
exemplary visualized for k = 2 and ρ = 2. It is
illustrated that the interval reliability links the concepts
of availability and reliability because the special cases
of interval reliability setting ∆t = 0 or t = 0 are

TABLE I
COMPARISON OF STEADY-STATE UNAVAILABILITY AND MTTFF

λ · s µ · s ρ Ā4 MTTFF4

10−3 1 10−3 5 · 10−7 11.5 days
10−1 102 10−3 5 · 10−7 2.8 hours
101 104 10−3 5 · 10−7 100 s
103 106 10−3 5 · 10−7 1 s
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equal to the instantaneous availability and reliability
over time, respectively. Since the availability converges
to the steady-state availability, the interval duration ∆t
has the major impact on interval reliability. As long
as a transmission has not been initiated, the interval
reliability function can be evaluated in the dimension
of time t. Once a transmission is started, the interval
reliability function develops in the dimension of the
interval duration ∆t.

VII. CONCLUSION

Reliability theory provides a set of mathematical
tools, which are applied to evaluate and improve the
life cycle performance of products. In this paper, we
demonstrate that it is possible and beneficial to leverage
this tool set and transfer it to a wireless communications
scenario.

Especially in the context of 5G, the usage of appropri-
ate definitions and a proper distinction between different
metrics, such as "availability" and "reliability", is essen-
tial. We have shown that "availability" is an outgrown
quantity for wireless communications. Instead, we intro-
duced the term "interval reliability" for wireless systems
and presented a closed form expression for MTTFF of
a koon scenario. Using these more distinguished KPIs
when referring to URLLC may sharpen discussions
about the topic. For a factory automation scenario, we
determined that steady-state availabilities only depend
on ρ, reflecting the ratio of the AP’s channel failure rate
λ and its channel repair rate µ. In contrast, MTTFF is
influenced by their absolute values. Accordingly, our re-
sults demonstrate that multiple system designs with the

same steady-state availability can exhibit significantly
varying MTTFF. Moreover, we present the benefit of
introducing redundancy capturing a numerical trade-off
analysis between throughput and availability.

It is of interest to extend this work by considering
mobility aspects, a variant number of users as well as
fluctuating characteristics of the wireless channel, e.g.,
path loss, shadowing, and multipath fading. These in-
vestigations are important steps to enable key challenges
of future networks and especially URLLC, one of the
expected main use cases of 5G.
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