The ZuSE-KI-Mobil Al Accelerator SoC:
Overview and a Functional Safety Perspective

Fabian Kempf!, Julian Hoefer!, Tanja Harbaum', Juergen Becker', Nael Fasfous?,
Alexander Frickenstein?, Hans-J oerg Voegel2 Simon Friedrich3, Robert Wittig3, Emil Matds?,
Gerhard Fettweis®, Matthias Lueders®, Holger Blume?, Jens Benndorf?, Darius Grantz>, Martin Zeller,
Dietmar Engelke’, Karl-Heinz Eickel’

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
{fabian.kempf, julian.hoefer, becker}@kit.edu
2 Bayerische Motoren Werke Aktiengesellschaft (BMW AG), Munich, Germany
3 Technical University of Dresden (TUD), Dresden, Germany
41 eibniz University Hannover (LUH), Hannover, Germany
SDream Chip Technologies GmbH, Hannover, Germany

Abstract—ZuSE-KI-Mobil (ZuKIMo) is a nationally funded
research project, currently in its intermediate stage. The goal of
the ZuKIMo project is to develop a new System-on-Chip (SoC)
platform and corresponding ecosystem to enable efficient Artificial
Intelligence (AI) applications with specific requirements. With
ZuKIMo, we specifically target applications from the mobility
domain, i.e. autonomous vehicles and drones. The initial ecosystem
is built by a consortium consisting of seven partners from German
academia and industry. We develop the SoC platform and its
ecosystem around a novel Al accelerator design. The customizable
accelerator is conceived from scratch to fulfill the functional
and non-functional requirements derived from the ambitious
use cases. A tape-out in 22 nm FDX-technology is planned in
2023. Apart from the System-on-Chip hardware design itself, the
ZuKIMo ecosystem has the objective of providing software tooling
for easy deployment of new use cases and hardware-CNN co-
design. Furthermore, Al accelerators in safety-critical applications
like our mobility use cases, necessitate the fulfillment of safety
requirements. Therefore, we investigate new design methodologies
for fault analysis of Deep Neural Networks (DNNs) and introduce
our new redundancy mechanism for AI accelerators.

Index Terms—System-on-Chip, AI Accelerator, Development
Methodology, Fault Simulation, Functional Safety

I. INTRODUCTION

The race to provide more autonomous features for vehicles,
robots or drones, has led to a clear trend in technological
advancements in several domains, such as computer vision,
decision-making, and artificial intelligence (AI). With the in-
creasing level of autonomous driving features to be offered,
the challenges in this field have changed dramatically. As of
today, the enormous potential can only be estimated, but it is
certainly going to change the market extensively and have long-
term impacts.

Advances in autonomous driving and robotics have estab-
lished the use of Al algorithms as they have become state-of-
the-art in computer vision. Particularly, Al algorithms are set to
enable high levels of autonomous driving to make independent
decisions, even in safety-critical situations. Therefore, data
received via cameras, LiIDAR, radars, and other sensors must be
interpreted and processed safely and in real-time. The problem

here is the large amounts of data. Processing this amount of
data pushes today’s embedded systems to the limits of their
capabilities and even exceeds them.

At the same time, low- and zero-emission driving concepts
are another core focus for the mobility domain, especially elec-
tric vehicles. With regard to battery-electric drives, the energy
consumption of the autonomous driving system is becoming
increasingly important. The energy stored in the battery systems
should primarily be used to power the vehicle’s drive systems
and not for on-board electronics and Al-based computing
systems. To resolve this conflict and secure or expand their
international market position, the availability of powerful and
energy-efficient processors for Al-intensive applications is an
essential prerequisite for automotive manufacturers. Further-
more, introducing powerful SoC designs and ecosystems for Al
accelerators in the relevant value creation areas plays at least
as important a role in the continued economic success of the
automotive industry as the performance of the Al accelerators
themselves.

Our consortium aims to establish such an SoC and cor-
responding ecosystem. It consists of seven partners; three
universities and four industry partners. Each partner focuses
on different aspects of the system. The Karlsruhe Institute of
Technology (KIT) investigates safety features and the develop-
ment methodology, including virtual platforms for SoCs and Al
accelerators. Software tooling for compilation and deployment
of AI models onto the SoC is done by the Leibnitz University
Hannover (LUH). The novel and energy efficient Al accelerator
is developed by the Technische Universitit Dresden (TUD).
These three partners from academia combine their research ac-
tivities with interests from industry. Dream Chip Technologies
GmbH integrates the novel Al accelerator, safety features and
other components into the SoC, and is responsible for layout
and physical design. Bayerische Motoren Werke (BMW AG)
provides a 3D object detection use case and is involved in the
development methodology. A drone use case is provided by
Infineon Technologies AG. Both uses cases will showcase the

ZuKIMo SoC
Applicati
Ppp 1cation Dual 20 MP
TOCessor i
Image Signal
Dual-Core Processor
Cortex-A65AE
Post/Pre-
Safe fge:: Processor Video Display
CD“al ko DSP + CNN il @iy
ortex- Accelerator
LPDDR4 PCle LUy I}IIZI(I;I/ r;{’ti(
2 x 32 Bit Gen3 o
100M / 10M UART,

Fig. 1: Block diagram of the ZuKIMo SoC. The green compo-
nents are developed by Dream Chip. The SPA-ML architecture
is developed within the consortium by TUD.

project’s results. Finally, the goal to build up the ecosystem
around the SoC platform and acquiring new use cases and end
users is managed by Infineon and T3-Technologies.

With this article we give an overview of the ZuKIMo project
to provide a reference for future publications emerging from the
research activities in this project. In the following section the
project’s core goals are presented. Then in design
methodologies are brought to focus highlighting current results
and scientific papers emerging from the project. After this
we explain our DNN resilience studies and functional safety
features. Finally, a conclusion is given.

II. THE ZUKIMO PROJECT

In this section we will give an overview of the ZuKIMo
project. First, we present the overall SoC design. Then we
introduce the newly developed Al accelerator and the software
tooling before giving an overview of the target use cases.

A. The ZuKIMo SoC

The SoC consists of multiple state-of-the-art components to
fulfill the platform requirements. [Figure I| shows the essential
components of the ZuKIMo SoC. The majority of computing
performance comes from the application processor and two
accelerators. The ARM dual-core Cortex-A65AE processor
provides enough performance capacity for executing high-
performance applications. Additionally, the SoC provides a
commercial DSP for data pre- and post-processing. Further-
more, the DSP provides enough performance for limited CNN
acceleration. The central accelerator of the ZuKIMo SoC is the
novel mixed-precision Al accelerator. The Scalable-Precision
Accelerator for Machine Learning (SPA-ML) is developed
within this research project and is targeted for efficient CNN
acceleration. The key functionalities and the basic design are
described in a subsequent section.

The Safe Island is intended for dedicated safety tasks. The
dual-core Cortex-R52 runs in lock-step operation with fault
detection. Ultimately, the Safe Island orchestrates the safety
features of the chip.

The Dual 20 MP Image Signal Processor (ISP) is used for
image pre-processing of the four lane MIPI interface. The ISP

is developed by Dream Chip according to the 1S026262:2018
standard and supports up to ASIL-B/D. A 24-bit hard-wire
image pipeline with low energy consumption is used. The ISP
requires no additional frame buffer which leads to a low latency.

The SoC provides multiple IO interfaces. High-speed com-
munication is guaranteed by PCle Gen3 and 1 Gbit Ethernet
controllers. The LPDDR4 interface provides enough bandwidth
to the data processing units on the SoC.

At the end of the project, we plan to tape-out the chip
with GlobalFoundries’ 22nm FDX technology at 750 MHz.
The platform should achieve a total of 10 TOPS with INT8
precision.

B. Scalable-Precision Accelerator for Machine Learning

The ZuKIMo SoC incorporates an energy-efficient Scalable-
Precision Accelerator for Machine Learning (SPA-ML) that is
developed by TUD. The focus of the design is to efficiently
support mixed-precision operands within the entire compute
pipeline of SPA-ML. Therefore, a bit-serial architecture is
developed. This bit-flexible methodology applies not only to
the computational engines within the Neural Processing Unit
(NPU) core for accelerating convolutions, pooling, and shortcut
addition, but also to the memory alignment. SPA-ML consists,
as shown in of a lightweight processor core with
dedicated program memory, a closely coupled separate mem-
ory, DMAs, and the NPU Core. The integrated processor is an
open-source implementation of the Rocket Chip RISC-V core.
It is used to control the computation of a DNN and to fully
support layer-fusion without hardware limitations [/1.

The NPU core consists of a PE array and is optimized
for 2D convolutions. Additionally, the NPU accelerates fully-
connected layers. Piecewise linear approximation is supported,
allowing for flexibility and a wide range of activation functions.

The memory scheme, in combination with a regular instruc-
tion set architecture, enables the exploitation of the regularity of
convolutional layers and results in a small instruction footprint
for entire CNNs. Moreover, these advantages also apply to
the acceleration of the more general dilated and transposed
convolution operations with efficient zero-skipping. Compared
to other accelerators, SPA-ML efficiently computes these layers
without additional hardware or restrictions to the supported
layer parameters as detailed in [2].

C. Software Tooling

To extract maximum performance and energy efficiency
from the accelerator and SoC, modern and advanced tooling
is implemented in the ZuKIMo project. The tooling includes
Al optimization tool flows for the accelerator and a software
pipeline for image processing integrated into a customized
Linux operating system. To compile and optimize CNNs for
the accelerator, an Apache TVM integration implements the
translation of standard CNN models from the ONNX format
to an executable format in C for the control flow and a
YAML file as the layer sequence representation. In addition
to the translation, various optimization steps, like layer fusion
and data-reuse strategies, are integrated into the Apache TVM
toolchain. A customized mainline Linux with an integrated

7 input Image, ™.
(Weights,)
“< _Meta Data_ -~

{ RISC-V Program }

AXI AXI
Slave Master
(SPA-ML [| |)
¢> Closely
Coupled MEM
RISC-V @ IMB
Program <:>
NPU Core
Memory A
Logic ‘CONV Engine
s = =
Control POOL Engine
I g
ova (1111
¢> Rocket Chip
RV32e
\ J

Fig. 2: Block diagram of the SPA-ML architecture of TUD.

gstreamer pipeline is deployed for image and video processing
on the ARM Cortex-A65AE processor to enable efficient image
processing.

D. ZuKIMo Use Cases

As highlighted earlier, the ZuKIMo project is focused on
edge scenarios, particularly autonomous driving and drone use
cases. The core idea of developing a complete SoC with a
custom accelerator and developer-friendly tooling, from design
to fabrication, is meant to inspire such bottom-up, hands-on
development projects at the national level, and potentially at
the continent level. A corresponding ecosystem invites other
key players in the German automotive industry to take part in
using and further developing the tools and future iterations of
the SoC down the line.

For the automotive use case, we started with the complex yet
critical task of 3D object detection. To process LiDAR sensor
data for this task, CNNs in this domain use 3D convolutions.
These networks can be very demanding in terms of compute
complexity, particularly on an edge device. To facilitate the
efficient deployment of the Al-based task, a more hardware-
aware approach was chosen, namely the PointPillars method.
PointPillars creates 2D maps of the 3D point clouds, and relies
only on standard 2D convolutions to process the data. We
further apply uniform and flexible quantization techniques [3]],
[4] to extract execution advantages on our bit-flexible hardware
accelerator. This is one example of the hardware-software co-
design techniques applied in the ZuKIMo project.

III. DEVELOPMENT METHODOLOGY

The design of highly integrated electronic circuits with
application-specific components, such as an Al accelerator,
is characterized by a large number of degrees of freedom.
In particular, the decisions to be made in the context of
hardware/software co-design, such as the allocation of tasks to
different hardware and software units, the memory hierarchy,

or hardware-aware quantization techniques, all encompass a
design space of considerable size.

For the specific case of Al accelerators, it is necessary to
weigh different and conflicting optimization objectives against
each other. The aim is to maximize the computing efficiency
that can be achieved by the SoC while minimizing the power
and energy consumption. Additionally, the safety requirements
to be met make it necessary to integrate safety mechanisms, but
these in turn can have a detrimental effect on the achievable
computing performance and/or energy consumption. Therefore,
to develop the best-fit Al accelerator architecture with respect to
multi-objective optimization, it is essential to compare different
implementation alternatives early in the design process and
discard inferior alternatives. In particular, the components and
mechanisms necessary to meet the safety requirements must be
taken into account, as their integration can have a significant
impact on the various optimization objectives.

We investigate methods and tools suitable for the early evalu-
ation of implementation alternatives and automated exploration
of the design space. A special focus is set on the aspects
of analytical hardware-CNN co-design and early integration
and optimization on a virtual platform. Finally, we give an
overview on partitioning options for CNN inference on multiple
computing nodes.

A. AnaCoNGA: Analytical Co-Design using Nested Genetic
Algorithms

Within the context of developing design methodologies to
achieve hardware-software co-design, we investigated oppor-
tunities of creating design loops which parallely design the
hardware and the software. The work in AnaCoNGA, proposed
analytical hardware-CNN co-design using nested genetic algo-
rithms (GAs) [5]. In detail, we investigated the design space of
mixed-precision quantization for weights and activations over
the layers of a CNN, as well as the design space of a scalable
hardware accelerator. Generally, searching two design spaces
takes longer than searching one, however, by nesting the design
spaces in each other, we forced one design space (the hardware)
to become a constraint on the other (the software, i.e. the
CNN), thereby reducing the overall search time of the design
methodology. This allowed a fast GA, which quickly designs
optimal hardware based on fast hardware-model rewards, to act
as a constraint on the slow outer GA which fine-tunes different
CNNs with variable bit-widths across their layers and requires
costly GPU-hours. With the novel nested design formulation,
AnaCoNGA improved the accuracy of a ResNet20 by 2.88 p.p.
compared to a uniform 2-bit quantized variant on CIFAR-10,
and achieved a 35% and 37% improvement in latency and
DRAM accesses, while reducing hardware LUT and BRAM
resources by 9% and 59% respectively, when compared to a
standard edge variant of the accelerator. The nested genetic
algorithm formulation also reduced the search time by 51%
compared to an equivalent, sequential co-design formulation.

FLECSim

DNN N SW Stack |z Accelerator R Metrics
Application Darknet | <] | SystemC model Accelergy
Quantization Chip area

Pruning Co-Design Energy consumption

Fig. 3: Design flow of the DNN application and hardware
accelerator co-design realized in FLECSim [6].

B. FLECSim-SoC: A Flexible Co-Design Simulation Frame-
work for System-on-Chips

With FLECSim we designed a framework for end-to-end
simulation of an SoC with dedicated accelerators [6]. The
simulation framework covers the main building blocks of SoCs
such as the CPU and memory that can be co-simulated with
a custom SystemC or RTL accelerator model. This allows an
early system performance analysis and, by flexible configura-
tion, enables exploration of the accelerator and memory design
space. The framework is built around the virtual platform
Imperas OVPSim [7]], which provides the CPU models.

The complete design flow and co-design process of FLEC-
Sim is detailed in The input of FLECSim is a
DNN application or model that may have already undergone
optimizations in terms of quantization and pruning, e.g., with
the design loops proposed by AnaCoNGA. The DNN model
is then implemented on the respective software stack, i.e.
the ML framework Darknet [8]] in the FLECSim example.
The convolutional layers are mapped on the accelerator model
described either in SystemC or Verilog, and during execution
of the simulation, traces and action counts are generated. This
information can be used to estimate crucial design metrics
such as dynamic energy consumption or chip area. For this
purpose, FLECSim offers an interface to the open-source tool
Accelergy [9]. By making the accelerator model configurable,
e.g. in terms of number of compute units, buffer sizes and
memory interface bandwidth, the design space of the SoC and
the accelerator can be explored. All layers and operations not
supported by the accelerator under test are executed in an
instruction-accurate manner by OVPsim. This enables accurate
end-to-end performance analysis of the entire SoC and closes
the co-design loop for DNN optimization if latency or energy
requirements are not met.

C. Hardware-aware Partitioning of CNNs

The scalable and transferable architecture of the SPA-ML
architecture allows integration in platforms of different per-
formance categories. Thus, a small size accelerator can be
used close to a sensor node, e.g. vision camera, or a large
one in embedded HPC systems, e.g. centralized Advanced
Driver Assistance Systems (ADAS). As depicted in
the dimensional reduction characteristic of CNNs, especially
in object recognition and semantic segmentation, offers an
interesting potential for optimization when using distributed

Convolutional Neural Network

Sensor Node Edge Node

1
1
1
1
L
m:
—
1
1
1
T

>

Input » Output

Fig. 4: The simulation toolchain presented in [10] evaluates
different partitioning points of a CNN on distributed embedded
computing nodes. The link layer transmits intermediate feature
maps of the CNN.

computing systems. When partitioning the CNN and computing
on different computing nodes, sweet spots can be identified
that help in reducing costly on-board communication over
the respective link. In the ZuKIMo project, we systematically
identified such sweet spots in common CNN architectures in
our work [10], which complements our co-design solutions.

IV. FUNCTIONAL SAFETY FOR Al PLATFORMS
AND DNN RESILIENCE

ZuKIMo targets safety-critical applications. In this section,
we present our work on improving the resilience of DNNs
against faults and adversarial attacks. We study the effects of
random hardware faults on the predictions of CNNs. Finally, we
present a novel safety mechanism to support functional safety
of Al accelerators.

A. Adversarial Attacks and Fault Resilience

An important dimension to investigate the safety aspect of
an Al deployment is to consider threats to the system due to
hardware faults and potential software attacks. The field of
adversarial attacks on DNNs garnered a lot of attention after
it was proven that minimal, optimized perturbations to images
can cause severe, high-confidence wrong classifications [[11]. It
is important to note that these perturbations are imperceptible to
the human-eye, yet they strongly trigger paths in the network,
with the intent to break its inference function.

As a consequence, another sub-field of research focused
on training against such attacks using adversarial training
techniques. A SoTA approach is Fast Adversarial Training
(FastAT), proposed in [12]. Within the scope of this project,
we investigated the fault resilience of FastAT-based networks
to understand whether training for adversarial attacks had any
effects on the performance of the DNN on hardware, in the
presence of hardware faults, i.e. bit-flips. The results of this
work were published in [[13]].

In summary, a network trained to be robust against adver-
sarial attacks had significantly larger scaling factors during
the quantization process, before deployment on edge hardware.
The consequence of large scaling factors is that a single bit-
flip in the value of weights and/or activations has a much
larger impact on the DNN. Through theoretical analysis and
extensive bit-flip injection testing, we showed that the failure

Neural Network

3x3 conv, 128

Al Accelerator

3x3 conv, 256
3x3 conv, 256

Fig. 5: A hybrid fault injection method to evaluate the influence
of a fault on the result. Faults are applied precisely on a specific
hardware module. Only calculations related to the fault are
simulated with a cycle-accurate RTL simulation. All other CNN
operations are performed without the hardware model.

rate was almost doubled in the presence of randomized bit-
flips in hardware for an adversarially trained network compared
to a vanilla trained one. To solve this problem and maintain
robustness against adversarial attacks, we proposed training
a FastAT DNN with high weight decay, in order to force
the DNN’s values to cover a smaller numerical distribution,
thereby requiring smaller quantization scaling factors. With
this approach we reduced the failure rate of an adversarially
trained ResNet56 by 25% for large-scale bit-flip benchmarks
on activation data, while gaining slightly improved accuracy
and adversarial robustness.

B. Fault Sensitivity Analysis for CNNs

Image classification or object detection are common appli-
cations of CNNs. The input image is processed by the CNN to
extract features and give predictions on objects and bounding
boxes. Under certain circumstances, the CNN can be disturbed
by random hardware faults to the point that the predictions
become false.

By nature, image data has a high degree of information
redundancy. Adjacent pixels differ only slightly and contain
correlated information. Typical low-level features in images are
simple edges and line shapes. The low-level features can be
aggregated to extract high-level, complex features which have
semantic relevance.

CNNs learn to generalize during training by distributing
the necessary information for extracting such features across
several neurons. This instills a considerable amount of inherent
redundancy in neural networks, and hence, a randomly occur-
ring hardware fault might not always lead to a false prediction.
To reduce the amount of redundant information, compression
techniques such as pruning and quantization are often applied
to reduce the network’s memory footprint. From a functional
safety perspective, the probability of false predictions due to
hardware faults is critical knowledge.

Within ZuKIMo we investigate a CNN’s behavior under ran-
dom hardware faults. To this end, we develop a novel method
of hardware fault simulation and analysis which overcomes the
limitations of the state-of-the art. The method is not limited to

Fig. 6: A PE array with a time and spatial redundancy. The
color represents the input of a column and the gradient the
input of a row, respectively. In the first iteration weights and
features are calculated in the default location. For the second
iteration the inputs are permuted.

analysis on a behavioral level, where faults are injected only
to the algorithm. We consider the effects of a fault occurring
in a hardware unit. demonstrates the approach, where
we enable accurately targeting the fault injection on specific
registers under test. With the targeted injection, we are not
limited to data registers, but can also analyze faults in control
logic. A fault is injected during the calculation of a CNN layer
under test. The usage of a hardware model enables modeling
the fault propagation in both hardware and the algorithm.

A complete cycle-accurate hardware simulation is extremely
time-consuming, so simulating a complete CNN inference on a
hardware accelerator can take hours to days. Hence this is not
a feasible solution when it needs at least thousands of sample
images to estimate a CNN’s resilience against a fault. The
approach developed in ZuKIMo uses fast DNN inference with
calculations which are not affected by a fault. The hardware
simulation on the register-transfer level (RTL) is limited to
locations affected by the injected fault. The approach breaks
down the problem by only simulating the affected loops of
the CNN with respect to the hardware mapping, in a cycle-
accurate manner. The rest of the inference is run in a standard
ML framework. This hybrid methodology allows both a fast
and accurate simulation of the fault behavior.

Our results reveal the different effects of faults on CNNs.
There are CNN layers which are more resilient to faults
than others, depending on the layer’s properties and hardware
mapping. Furthermore, we identify critical hardware registers
in the accelerator PEs’ data path and control logic.

C. Efficient Safety Mechanism for Al Accelerators

Our CNN fault resilience analyses reveal varying degrees
of fault sensitivity. We show that different layers can be more
and less fault sensitive. Faults occurring during fault sensitive
calculations are more likely to result in an incorrect prediction.
On the other hand, there are layers and calculations with
negligible influence, where faults do not affect the prediction
result. Therefore, we investigate an adaptive safety mechanism.

Kempf et al. suggested runtime adaptive redundancy as a
safety mechanism for a multi-core processor [[14]], [[15]. The
proposed safety mechanism can be seamlessly configured at
runtime. In ZuKIMo the concept is transferred to a data-flow

architecture such as the SPA-ML. The flexibility of enabling
and disabling redundancy at runtime is able to protect fault
sensitive layers and provide the maximum performance for the
other layers. One major advantage of adaptive redundancy is
the reuse of existing hardware. The high amount of parallelism
in the hardware architecture is divided to either maximise the
throughput or enable the safety mechanism.

Therefore, a novel approach is proposed and investigated.
The approach combines time and spatial redundancy con-
cepts where the advantages of both redundancy techniques
are enhanced and the disadvantages are minimized. The time
redundancy prevents common mode failures by calculating each
operation twice with a delay of several clock cycles. Addi-
tionally, we perform the redundant calculations on different
processing elements (spatial shift) which ensures a detection of
permanent faults and faults in the data path to the PE. We call
this approach a dynamic time and spatial redundancy concept
which we depict in [Fig 6

Time redundancy is directly realized within the control logic
of the NPU core. By re-execution of the internal microcode, the
affected microinstructions of safety critical layers are repeated.
This includes data loading (weights and features) from the
memory, calculations, and the write back to the memory. Our
safety mechanism ensures that the redundant calculations are
done on different PEs as detailed in For the re-
computation, the input data within the rows and columns are
permuted. For the permutation we make use of the regular
hardware structure. The PE array consists of an even number
of PE rows and columns. Two neighboring rows and columns
build a pair. For the re-computation the inputs of each pair
is swapped. Swapping both rows and columns is used to
prevent undetected permanent faults. Otherwise a permanent
fault inside of the input data path could remain undetected.

Before the results are written back to the memory they are
checked to be identical. Therefore, the result of the first cal-
culation is not directly written to the memory, but temporarily
stored for a later voting. The result of the second calculation is
compared with the temporarily stored data and only if identical,
the data is written to the memory. The presence of a fault
triggers an interrupt and fault handling must be done by the
superior instance.

The presented approach of time and spatial redundancy uses
the advantages of both redundancy techniques. Permanent faults
are detected and common mode failures are prevented. Disad-
vantages of both techniques are reduced to a minimum. Espe-
cially the hardware overhead of traditional spatial redundancy
is minimized. The required safety mechanism is configured
individually for each layer and changes during the execution.
Depending on the fault sensitivity of a layer, redundancy is
enabled or disabled. When faults are tolerable the complete PE
array is utilized for maximum performance.

V. CONCLUSION
The project ZuSE-KI-Mobil will deliver an SoC platform
with the novel SPA-ML architecture and a software ecosystem.
Partners from industry and academia work tightly together
to fulfill the ambitious project goals and realize the tape-out

planned in 2023. Besides a general overview, first intermediate
project results are presented in this article with a particular
focus on functional safety considerations and hardware-CNN
co-design . In already published and planned publications, the
consortium will continually report on specific aspects in greater
detail.

ACKNOWLEDGMENT

This work was funded by the German Federal Ministry
of Education and Research (BMBF) under grant number
16MEO0096 (ZuSE-KI-mobil). The responsibility for the content
of this publication lies with the authors. Furthermore, we thank
GlobalFoundries, Synopsys, Cadence, Arteris, and ARM for
supporting this research.

REFERENCES

[1] S. Friedrich, R. Wittig, E. Matds, and G. Fettweis, “Energy-based
optimization for resource limited neural network accelerators with fused-
layer support,” in 3 rd International Conference on Advances in Sig-
nal Processing and Artificial Intelligence (ASPAI’), Virtual Conference
(Porto, Portugal), Nov 2021, pp. 41-45.

[2] S. Friedrich, S. Balamuthu Sampath, R. Wittig, M. Rohit Vemparala,
N. Fasfous, E. Matd§, W. Stechele, and G. Fettweis, “Lightweight instruc-
tion set for flexible dilated convolutions and mixed-precision operands,”
in 2023 24th International Symposium on Quality Electronic Design
(ISQED), April 2023, to be published.

[3] J. Choi, Z. Wang, S. Venkataramani, P. I.-J. Chuang, V. Srinivasan,
and K. Gopalakrishnan, “PACT: Parameterized clipping activation for
quantized neural networks,” ArXiv, vol. abs/1805.06085, 2018.

[4] N. Fasfous, M. R. Vemparala, A. Frickenstein, E. Valpreda, D. Salihu,
N. A. V. Doan, C. Unger, N. S. Nagaraja, M. Martina, and W. Stechele,
“Hw-flowq: A multi-abstraction level hw-cnn co-design quantization
methodology,” ACM Trans. Embed. Comput. Syst., vol. 20, no. 5s, sep
2021.

[5] N. Fasfous, M. R. Vemparala, A. Frickenstein, E. Valpreda, D. Salihu,
J. Hofer, A. Singh, N.-S. Nagaraja, H.-J. Voegel, N. A. Vu Doan,
M. Martina, J. Becker, and W. Stechele, “Anaconga: Analytical hw-cnn
co-design using nested genetic algorithms,” in 2022 Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2022, pp. 238-243.

[6] T. Hotfilter, J. Hoefer, F. KreB3, F. Kempf, and J. Becker, “Flecsim-soc: A
flexible end-to-end co-design simulation framework for system on chips,”
in 2021 IEEE 34th International System-on-Chip Conference (SOCC),
2021.

[7]1 Imperas, “OVP: Fast simulation, free open source models, public APIs:
Open virtual platforms.” [Online]. Available: https://www.ovpworld.org/

[8] J. Redmon, “Darknet: Open source neural networks in c,” http://pjreddie.
com/darknet/, 2013-2016.

[9] Y. N. Wu, J. S. Emer, and V. Sze, “Accelergy: An Architecture-Level

Energy Estimation Methodology for Accelerator Designs,” in IEEE/ACM

International Conference On Computer Aided Design (ICCAD), 2019.

F. KreB3, J. Hoefer, T. Hotfilter, I. Walter, V. Sidorenko, T. Harbaum, and

J. Becker, “Hardware-aware partitioning of convolutional neural network

inference for embedded ai applications,” in 2022 18th International

Conference on Distributed Computing in Sensor Systems (DCOSS).

1. j. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and Harnessing

Adversarial Examples,” in ICLR, 2015.

E. Wong, L. Rice, and J. Z. Kolter, “Fast is better than free: Revisiting

adversarial training,” in ICLR, 2020.

N. Fasfous, L. Frickenstein, M. Neumeier, M. R. Vemparala, A. Frick-

enstein, E. Valpreda, M. Martina, and W. Stechele, “Mind the scaling

factors: Resilience analysis of quantized adversarially robust cnns,” in

2022 Design, Automation & Test in Europe Conference & Exhibition

(DATE), 2022.

F. Kempf, T. Hartmann, S. Baehr, and J. Becker, “An adaptive lockstep

architecture for mixed-criticality systems,” in 2021 IEEE Computer

Society Annual Symposium on VLSI (ISVLSI), 2021.

F. Kempf, J. Hoefer, F. KreB, T. Hotfilter, T. Harbaum, and J. Becker,

“Runtime adaptive cache checkpointing for risc multi-core processors,”

in 2022 [EEE 35th International System-on-Chip Conference (SOCC),

2022.

[10]

[11]
[12]

[13]

[14]

[15]

https://www.ovpworld.org/
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/

	Introduction
	The ZuKIMo Project
	The ZuKIMo SoC
	Scalable-Precision Accelerator for Machine Learning
	Software Tooling
	ZuKIMo Use Cases

	Development Methodology
	AnaCoNGA: Analytical Co-Design using Nested Genetic Algorithms
	FLECSim-SoC: A Flexible Co-Design Simulation Framework for System-on-Chips
	Hardware-aware Partitioning of CNNs

	Functional Safety for AI Platforms and DNN Resilience
	Adversarial Attacks and Fault Resilience
	Fault Sensitivity Analysis for CNNs
	Efficient Safety Mechanism for AI Accelerators

	Conclusion
	References

