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Abstract

Sharing memory in embedded systems presents a promising approach to increase the area utilization of these
constraint platforms. However, sharing inevitably results in access conflicts, which diminish the overall system
performance. As a counter measure, we propose Access Interval Prediction. We argue that most memory transaction
of embedded processors can be reliably predicted in the time domain. Therefore, preallocation of shared resources
can be used to avoid collisions in the memory system. Our statistical model shows an accuracy of over 90 percent,
thus significantly reducing memory contention.

I. MOTIVATION AND OVERVIEW

Current technology nodes enable mobile communication engineers to integrate complete modems as system
on chip solutions [1], [2]. Communication between multiple processing elements (PEs) can be done via FIFOs
or shared memory. The latter has the advantage of reduced energy consumption (no data transfers needed) but
is susceptible for access conflicts. Banking SRAM resources can mitigate this problem [3]-[5], but again
increases area and energy consumption. Hence, we propose Access Interval Prediction (AIP). We show how
statistical information can be used to pre-allocate shared resources of tightly coupled memory systems to avoid
conflicts. For evaluation, we assume the system shown in Fig. 1. A processor acts as a high priority master
(HPM). In this paper we use a Xtensa LX6, commonly found in embedded platforms. Instruction and data
port are connected to different memory banks. Further, one of the banks is shared with another low priority
master (LPM). Depending on the shared bank, AIP is conducted for the instruction or data port of the HPM.
Furthermore, we assume that the LPM is accessing the memory every cycle (e.g. data movement engine).
As software we use the integer testsuite of the wildly acknowledged SPEC CPU benchmark. The described
system is simple enough to focus on the performance of AIP but can be extended for the use of multiple HPMs
and memory banks.

II. THEORY

We define d = d; as the i-th randomly distributed access interval between two consecutive memory
transactions of a single PE. An observation of d can take realizations between 1 and L and is denoted as
d; € {1,..., L}. For every interval ¢ we want to have an estimator d such that the error d = d — d becomes
zero with hlgh probability: max P (d 0). The result, if no further observations are available, is a maximum
likelihood (ML) estimator: d = arg maxq P(d).

If we have access to previous observations y = Yy = [d;_g, ..., d;_1], we can use a maximum a posteriori
(MAP) estimator: ci“y = arg maxq P(d|y). In order to calculate the MAP estimator, the joint probability
mass functions (pmf) fy, (dy) = P(d = d|y) are required.

The probability of a correct prediction is given by: P (ci = d). In this case we can pre-arbitrate the HPM
port with no penalty. If the predicted interval is longer than the true interval P (cz > d) a conflict penalty is
incurred, because LPM and HPM want to access the memory at the same time. If, in contrast, the predicted
interval is shorter than the true interval P(ci < d), two different scenarios are possible. 1) We can block the
bank exclusively for the HPM port (priority blocking). This entails no conflict, but reduces the throughput of
the LPM. 2) The LPM can access the bank after the miss-prediction (free-for-all). In this case the next access
of the HPM will result in a conflict but the throughput of the LPM is not diminished. Thus, the probability of
a conflict free access is given by

P P(d = d) free-for-all n
ofa P(d=d)+ P(d < d) priority blocking.

Moreover, we introduce the interval utilization. It measures the normalized memory utilization of the LPM.
The difference between the absolute and interval utilization is illustrated in Fig. 2



III. EVALUATION AND IMPLEMENTATION CONSIDERATIONS

Fig. 3 depicts the probability of a conflict free access for the instruction and data port. Further, we differ-
entiate between priority blocking and free-for-all mode. For readability, we averaged P.s, over all testcases.
In free-for-all mode, the ML estimator (k = 0) performs better at the instruction port (P., = 71 %) than at
the data port (P.t, = 33 %). In contrast, the MAP estimator (k > 0) has a deeper impact at the data port. For
k > 2 the probability of a conflict free access is already greater than at the instruction port. Furthermore, we
observed that:kli_>1r§O P, = 100 % at both ports. This was to be expected because for k — oo every access can

be identified by its unique history. However, it is noteworthy that prediction rates of over 90 % can already be
achieved for k£ > 4. In comparison, architectures relying solely on an interleaved memory bank system [6]
only achieve a probability of P.;, = 75 % in the given scenario'. With priority blocking, the ML estimator
achieves P.;, = 100 % at the instruction port. The reason is that most intervals at the instruction port have an
interval of one cycle, which is the prediction of the ML estimator. In consequence, the prediction can either be
true or too short. In the latter case, the memory gets blocked for the HPM, which also results in a conflict free
access (equation 1). This is also the reason why the MAP estimator performs slightly worse for increasing k.
However, for kK — 00, the probability approaches 100 % at both ports.

The interval utilization is the second key metric for the evaluation of AIP, which is shown for the blocking
mode in Fig.4. The ML estimator achieves 0% at the instruction port. Again, this is due to the fact that
every access is predicted with an interval of one cycle and the memory is blocked for false predictions. The
performance of the MAP estimator improves considerably for & > 3, because more estimations have an
interval d > 1.

AIP can result in a speedup, if predictions are correct and subsequent conflict penalties are avoided. The
speedup is dependent on the penalty C' incurred by an access conflict. Fig. 6 shows the speedup for different
values of C over Py,. For Py, = 0 every access would result in a conflict. In contrast, with 100 % accuracy,
no conflicts would occur. It can be seen that the possible speedup for the instruction port is higher than for the
data port. This is due to the higher absolute utilization of the instruction port, which results in more conflicts
for false predictions. Also shown are the achieved values of P, for k € {0, 8}. Again, a system only relying
on interleaved memory banks would achieve P.;, = 75 %. It can be seen that the blocking mode achieves
higher speedups than the FFA mode. In contrast, it was shown that the interval utilization is higher in FFA
mode. Hence, there is a trade-off between speedup and interval utilization.

To implement the proposed statistical AIP approach, it is necessary to save the maxima of the pmf functions
in a look-up-table (LUT). The observation vector can than be used as an address into the LUT to retrieve
the next interval. Shared resources can be pre-allocated accordingly. Fig.5 shows how many maxima the
individual pmf functions yield. Also shown is the number of total memory accesses for the instruction and data
port. It can be seen that the number of maxima saturates about four orders of magnitude below the number of
accesses. This contradicts the assumption that each transaction is defined by an individual observation vector
for k — oo. In consequence, the implementation overhead is not growing exponentially with &, but only with
O(log k). Since every maxima can be represented with a single byte (estimations longer than 256 are very
rare and can be clipped), the MAP estimator with £ = 15 can be implemented with around 10 kB of RAM.

IV. CONCLUSION AND OUTLOOK

In this paper we introduce Access Interval Prediction. We show how statistical information about the
program flow can be exploited to reduce conflicts in tightly-coupled memory systems. The performance
evaluation shows that over 90 % of all conflicts can be avoided, using the introduced MAP estimator. In
contrast, interleaved memory systems only avoid 75 % of all conflicts. Further, we highlight a trade-off
between achievable speedup and memory utilization. Additionally, the paper estimates the implementation
overhead. In future works, we will extended the system to include more CPUs and memory banks.
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Fig. 1: AIP System Model.
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Fig. 3: Probability of conflict free access P, for
free-for-all (FFA) and blocking mode.
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Fig. 4: Interval utilization U; for blocking mode. For
free-for-all Uy equals 1.
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Fig. 6: Performance gain of Access Interval Prediction (AIP).



