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Abstract—Acquiring digital representations of multivariate
continuous-time (CT) signals is a challenge encountered in many
signal processing systems. In practice, these signals are often
obtained in order to extract some underlying information, i.e.,
for a specific task. Employing conventional task-agnostic analog-
to-digital converters (ADCs) can be inefficient in such cases.
In this work, we study task-based ADCs designed to obtain
a digital representation of a multivariate CT input process
to recover an underlying random parameter vector, referred
to as the task. The proposed system employs analog filtering,
uniform sampling, and scalar uniform quantization of the input
process before recovering the task vector using a linear filter.
We optimize the analog and digital filters and derive closed-
form expressions for the achievable MSE in recovering a task
vector from a set of bandlimited signals when utilizing a fixed
quantizer resolution and sampling rate satisfying the Shannon-
Nyquist sampling theorem. Guidelines for the design of practical
acquisition systems are obtained from the structure of the MSE
minimizing analog filter. Our numerical results, which consider
the recovery of a set of matched filter outputs under a rate
budget, demonstrate that the proposed approach substantially
outperforms both, implementing the matched filter solely in the
analog or digital domain.

Index Terms—quantization, sampling, estimation, analog-to-
digital converter

I. INTRODUCTION

Analog-to-digital converters (ADCs) allow physical signals
to be processed using digital hardware. ADCs perform two
operations: sampling, i.e., converting a continuous-time (CT)
signal into a discrete set of samples, and quantization, where
the continuous-amplitude samples are converted into a finite-bit
representation. Conventional ADCs are designed to recover
the input signal, where the sampling rate is typically chosen
matched to the bandwidth of the input signal, while the
quantizer resolution is chosen such that the quantization
distortion is sufficiently small [1]. If the task of the system
is not to reconstruct the CT input, but, e.g., to extract some
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information from it, this approach can be inefficient. Since
the power consumption of ADCs grows with the sampling rate
and the quantization resolution [2], such inefficiency directly
leads to increased power consumption. The power consumption
of conventional ADCs is considered a significant challenge
in beyond 5G systems, which are foreseen to utilize a large
number of antennas, i.e., massive multiple-input multiple-output
(MIMO), as well as large bandwidths in the millimeter wave
bands, to meet the ever-increasing demand for higher data rates.

Recently, it was demonstrated that a-priori knowledge about
the system task may be utilized in order to design task-based
quantizers [3]. The works [4]–[7] focused on the quantization
aspect of analog-to-digital conversion, showing that the distortion
induced by low-resolution quantization can be mitigated by
accounting for a task in the system. This was achieved by intro-
ducing pre-quantization processing, resulting in hybrid analog-
digital systems, as commonly utilized in MIMO communications
systems for the purpose of reducing the number of RF chains
[8]–[10]. For the sampling operation, such analog processing was
shown to facilitate the reconstruction of sub-Nyquist sampled,
frequency-sparse analog signals [11], [12], as well as to exploit
spatial correlation via joint sampling of multivariate CT signals
[13]. The works [11]–[13] all focused on the reconstruction of the
sampled signals, and thus did not consider the presence of a task.

Joint sampling and quantization has been investigated in [14]–
[16], where the minimum achievable reconstruction distortion
under a given rate budget is studied as an indirect source coding
problem. However, the performance of those systems can only
be achieved by vector quantizers, which are challenging for
implementation. Moreover, none of these works accounts for a
task. Finally, the recent work [17] used deep learning to design
task-based ADCs including both sampling and quantization, em-
pirically demonstrating the potential gains of such joint designs
for MIMO systems without providing a theoretical analysis.

In this work, we consider the design and analysis of ADCs for
the task of recovering a linear function of the observed signals.
Such tasks can represent, e.g., channel estimation as studied in
[5] or matched filtering, as considered in our numerical analysis.
We focus on bandlimited signals with sampling rates satisfying
the Shannon-Nyquist sampling theorem. Following [3]–[7],
[17], we consider a hybrid system with pre-acquisition analog
combining while utilizing uniform samplers and quantizers, and
optimize the system in light of the task.

We analytically characterize the minimum achievable mean
squared error (MSE) in recovering the desired task from the
analog input signals under a given sampling rate and quantizer
resolution for the considered system model. Furthermore, we
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Fig. 1. Overview of the system model. The task is to estimate the random vector s ∈ RN . The digital task estimate is denoted as ŝ ∈ RN .

obtain analytical expressions for the linear analog and digital
filters, which achieve this distortion. Our results show that neither
recovering the task in the analog domain and subsequently
sampling and quantizing the analog minimum MSE (MMSE)
estimate nor a fully digital architecture, which estimates the task
solely in the digital domain, is optimal. In our numerical study,
we apply the proposed task-based ADC system to the estimation
of the matched filter output in a MIMO system, demonstrating
the resulting gains over analog and digital matched filtering.

II. SYSTEM MODEL

We consider the hybrid ADC system model illustrated in
Fig. 1. Here, a set of M CT zero-mean jointly wide-sense
stationary (WSS) random signals {xm(t)}Mm=1 , t ∈ R, with
joint power spectral density (PSD) Cx(f) ∈ CM×M , f ∈ R, are
acquired for the task of estimating a zero-mean random vector
s ∈ RN . The signals {xm(t)} are bandlimited to

(
− fnyq

2 ,
fnyq

2

)
.

We assume a known statistical relationship between the CT
random input signals {xm(t)} and the random vector of interest
s. In particular, we assume that the MMSE estimate of s
from {xm(t)}Mm=1 takes a linear form. By defining x(t) =
[x1(t), . . . , xM (t)]T , this assumption implies that there exists a
Γ(t) ∈ RN×M such that

s̃ = E
{
s
∣∣∣ {xm(t)}Mm=1

}
=

∫

R
~Γ(t)x(t)dt = (Γ ∗ x) (0), (1)

where we use the shorthand notation ~Γ(t) = Γ(−t) for time
reversal. The resulting formulation models tasks which can
be expressed as linear functions of the observed signals. Such
problems, where the task is a linear function of the observations,
often arise in practice, e. g., in channel estimation or matched
filtering, as studied in Section IV.

A. Joint Sampling Operation

Our sampling operation implements joint sampling, which
is a framework for sampling a set of CT signals, allowing to
exploit their spatial correlation using analog filters [13]. The
M CT input signals are filtered by a multivariate analog filter
H(f) ∈ RK×M , f ∈ R, and the kth output is given by

yk(t) =
M∑

m=1

(hk,m ∗ xm) (t), k ∈ K = {1, . . . ,K}, (2)

where hk,m(t) denotes a scalar filter which is the inverse Fourier
transform (FT) of [H]k,m (f). The outputs {yk(t)}Kk=1 of the
analog filter H(f) are sampled by K identical uniform samplers,
each with sampling rate fs, i.e., the samples are spaced by
Ts = 1

fs
. Defining the sampling operation as yk[n] = Tsyk(nTs)

yields the discrete-time sequences {yk[n]}Kk=1.

B. Quantization Operation

The sampled signals {yk[n]}Kk=1 are subsequently quantized
by K identical uniform scalar mid-rise quantizers with an
amplitude resolution of b bits, i.e., each quantizer can produce
2b distinct output values. The (one-sided) dynamic range of the
quantizers is denoted as γ > 0, such that the quantization step
size is given by ∆ = 2γ

2b
. The mid-rise quantization function is

then defined as

q (x′) =

{
∆
(⌊

x′

∆

⌋
+ 1

2

)
, for |x′| < γ

sign (x′)
(
γ − ∆

2

)
, else,

(3)

where b·c denotes rounding to the next smaller integer and
sign(·) is the signum function.

In order to obtain an analytically tractable model for the
non-linear quantizers we assume that they are implemented as
nonsubtractive dithered quantizers, i.e., an additional signal
referred to as dither is added to the quantizer input prior to
quantization [18]. Nonsubtractive denotes therein that the dither
is not subtracted, i.e., compensated, after quantization. Hence,
the quantizer outputs are given by

zk[n] = Qb (yk[n]) = q (yk[n] + wk[n]) , k ∈ K, (4)

where {wk[n]}Kk=1 denotes the zero-mean dither random process,
which is i.i.d. in time and space, and mutually independent
of the input process. Following [18], the probability density
function of the dither signal is chosen as a triangular function
with a width of 2∆.

Quantizers are typically required to operate within their
dynamic range to yield distinguishable digital representations
of different inputs. Consequently, the overload probability, i.e.,
the probability that the magnitude of the input exceeds the
dynamic range, has to be negligible. Hence, the dynamic range

This document is a preprint of: P. Neuhaus, N. Shlezinger, M. Dörpinghaus, Y. C. Eldar, and G. Fettweis, “Task-based analog-to-digital converters
for bandlimited systems,” in Proc. European Signal Proc. Conf. (EUSIPCO), Virtual Conference (Dublin, Ireland), Aug. 2021.

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.



γ is chosen as a multiple η of the largest standard deviation of
the dithered input, i.e.,

γ2 = η2 max
k∈K

E{ỹ2
k[n]}, (5)

with ỹk[n] = yk[n] + wk[n]. Using Chebychev’s inequality, the
overload probability is now upper-bounded by [19, eq. (5-88)]

Pr {|ỹk[n]| ≥ γ} ≤ E{ỹ2
k[n]}

η2 maxk′∈K E{ỹ2
k′ [n]} ≤

1

η2
. (6)

For the considered dithered quantizer model and vanishing
overload probability, i.e., Pr {|ỹk[n]| ≥ γ} = 0, it follows from
[18, Th. 2] that the quantizer output can be written as

z[n] = y[n] + e[n]. (7)

The quantization error e[n] in (7) satisfies: i) e[n] is uncorrelated
with the input y[n]; ii) the entries of e[n] are uncorrelated in
both time and space; and iii) the autocorrelation function of the
quantization error e[n] is given by

Ce[l] = E
{
e[n+ l]eT [n]

}
=

∆2

4
IKδ[l], (8)

where δ[n] denotes the Kronecker delta function and IK denotes
the identity matrix of size K ×K. While the resulting model
of the quantization error rigorously holds for overload-free
nonsubtractive dithered quantizers, it also holds approximately
for conventional (non-dithered) uniform quantizers applied to a
broad range of inputs [20].

C. Problem Formulation

For a fixed number of ADCs, K, a fixed sampling rate
fs, and a fixed quantizer resolution b, our goal is to design
the task-based ADC system of Fig. 1 such that the MSE in
recovering the task vector s is minimized. We focus on linear
digital recovery using a digital filter G[n] ∈ RN×K , such that

ŝ =
∑

n∈Z

~G[n]z[n] = (G ∗ z) [0]. (9)

The design parameters are thus the analog filter H(f) and the
digital filter G[n]. Hence, we seek to characterize the minimal
MSE for the considered setup, given by minE

{∥∥s − ŝ
∥∥2}

.
We focus on sampling rates satisfying the Shannon-Nyquist
sampling theorem [1, Th. 4.1], i.e., fs ≥ fnyq. In this case,
{yk[n]}Kk=1 is not distorted by aliasing in the frequency domain.
An investigation of task-based ADCs with sub-Nyquist sampling
w.r.t. the filtered input {yk(t)}Kk=1, i.e., employing fs < fnyq,
is treated in [21].

III. TASK-BASED ADCS

In this section, we present a theoretical analysis of task-
based ADCs. First we derive the minimum achievable MSE
and characterize the corresponding system. Then, we discuss
the main insights which arise from our derivations.

In order to derive the minimum achievable MSE, we note
that the MSE in recovering s, i. e., E{‖s− ŝ‖2}, can always be
decomposed as [22, Appendix]

E
{
‖s− ŝ‖2

}
= E

{
‖s− s̃‖2

}
+ E

{
‖s̃− ŝ‖2

}
, (10)

i. e., as the sum of the MMSE in recovering s from x(t) and
the MSE of the digital estimate ŝ w. r. t. s̃. In the following, we
thus minimize E{‖s̃− ŝ‖2}, as E{‖s− s̃‖2} is independent of
the ADC. The proofs are omitted due to space limitations; they
can be found in [21].

First, we identify the MSE minimizing linear digital recovery
filter G[n] for a given analog filter H(f), as stated in the
following proposition:
Proposition 1. For a given analog filter H(f) ∈ RK×M , a
fixed ADC configuration (K, fs, b), where fs ≥ fnyq, the MSE
minimizing linear digital recovery filter is given by

Go[n]=Ts

∫ fs
2

− fs2
S(f)C−1

z (ej2πfTs)ej2πfnTsdf, (11)

where S(f) = Γ(f)Cx(f)HH(f), [Γ]n,m (f) is given by the
FT of [Γ]n,m (t) and Cz(e

j2πfTs) = TsH(f)Cx(f)HH(f) +
∆2

4 IK . Furthermore, the resulting minimum achievable MSE is
given by

MSE (H(f)) = E
{
‖s̃‖2

}
− tr

(
Ts

∫ fs
2

− fs2
Q(f)df

)
. (12)

where Q(f) = S(f)C−1
z (ej2πfTs)SH(f).

After obtaining the minimum achievable MSE for a given
analog filter H(f) and a fixed ADC configuration (K, fs, b),
our goal is to find the analog filter H(f) which minimizes (12).
The result is summarized in the following theorem:
Theorem 1. For a fixed ADC configuration (K, fs, b), where
fs ≥ fnyq, the MSE minimizing analog filter Ho(f) ∈ CK×M
is given by

Ho(f) = UH(f)ΣH(f)VH
H(f)

(
C1/2

x (f)
)†
, (13)

where (·)† denotes the pseudo-inverse and
• VH(f) ∈ CM×M is the matrix of right-singular vectors

of Γ(f)C
1/2
x (f).

• ΣH(f) ∈ RK×M is a diagonal matrix with diagonal en-

tries [ΣH(f)]i,i = 2−b
√(

ζσΓ̄,i(f)− 1
)+

, where σΓ̄,i(f)

denotes the ith singular value of Γ(f)C
1/2
x (f) and for

κ̄ = η2(1− 2 η2

3 22b )−1, ζ is chosen such that

κ̄ Ts

K

min(K,M)∑

i=1

∫ fs
2

− fs2
[ΣH(f)]

2
i,i df = 1.

• UH(f) ∈ CK×K is a unitary matrix which ensures iden-
tical diagonal entries of UH(f)ΣH(f)ΣH

H(f)UH
H(f).

The dynamic range of the quantizer is set to γ = 1, and the
resulting minimum achievable MSE is given by

MSE = E
{
‖s̃‖2

}
−

min(K,M)∑

i=1

∫ fs
2

− fs2

σ2
Γ̄,i

(f) [ΣH(f)]
2
i,i

[ΣH(f)]
2
i,i + 2−2b

df.

(14)

The MSE minimizing task-based ADC under the considered
system model is characterized by the combination of Theorem 1
and Proposition 1.

From Theorem 1 we can obtain guidelines for designing
task-based ADCs by examining the structure of the optimal
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analog filter Ho(f): First, a whitening filter, which is matched
to the input random process x(t), is applied. Then, VH(f) is
the matrix of right-singular vectors of the analog MMSE filter
for obtaining s̃ from the whitened input. However, the remaining
terms UH(f)ΣH(f) are different from recovering the MMSE
estimate in analog: The ’water-filling’-type expression in ΣH(f)
nullifies the weak eigenmodes, which cannot be resolved with
the given quantizer resolution. This corresponds to finding the
optimal trade-off between estimation error and quantization
distortion. Finally, UH(f) rotates the signal such that each ADC
processes a signal with an identical variance, i. e., optimally
utilizing the dynamic range of all quantizers.

The form of the resulting task-based ADC of Theorem 1
bears some similarity to the task-based quantizer derived in
[4]. This follows from focusing on Nyquist rate sampling of
bandlimited signals, which mitigates the distortion expected
to be induced by arbitrary sampling. However, in this work,
the sampling operation can mitigate the error induced by
quantization, which is not the case in [4].

The proposed task-based ADC combines both analog and
digital processing, tuning the overall system in light of the task.
The results in Theorem 1 are quite different from either of
the two more intuitive approaches: i) Analog recovery, where
the task is estimated in the analog domain, i.e., H(f) = Γ(f),
and the analog MMSE estimate s̃ is subsequently quantized
by K = N ADCs; ii) Digital recovery, where no analog
processing is employed, i.e., H(f) = IM , the CT random
process x(t) is digitized by K = M ADCs and the task is
subsequently estimated fully in the digital domain. Since in
general Ho(f) 6= Γ(f) and Ho(f) 6= IM , it can be concluded
that none of the alternative designs is generally optimal in
minimizing the MSE. This observation is numerically verified in
Section IV. Even larger gains can be obtained when employing
sub-Nyquist sampling, which is treated in [21].

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
task-based ADC in terms of its normalized MSE, given

by
E{‖s̃−ŝ‖2}
E{‖s̃‖2} . As an example, we consider the problem of

estimating the output of a set of matched filters. Digital matched
filtering, as typically implemented [23, Sec. 4.3.3], is expected
to be sub-optimal for systems with low-resolution ADCs. Let
x(t) be an observed multivariate random process at a MIMO
receiver, which is given by

x(t) = (F ∗ x̃) (t) + n(t), (15)

where x̃(t) denotes a zero-mean Gaussian transmit signal
with autocorrelation function Cx̃(τ) = INδ(τ), F(t) =
F̃ 1
Tnyq

sinc( t
Tnyq

), F̃ ∈ RM×N denotes the channel, and n(t)
is an additive white Gaussian noise process with autocorrelation
function Cn(τ) = N0

2
1

Tnyq
sinc( t

Tnyq
)IM . Note that the channel

F(t) and noise n(t) are bandlimited to f ∈ (− fnyq2 ,
fnyq

2 ) with
fnyq = 1

Tnyq
. We assume our task is to estimate the noiseless

matched filter output, i.e.,

s =
(
~F
T ∗ F ∗ x̃

)
(0). (16)
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Fig. 2. Normalized MSE vs. number of bits per sample b, fs = fnyq. The
task-based H(f) = Ho(f) achieves nearly the same performance as digital
recovery, i.e., H(f) = IM , using only K = 4 instead of K = 16 ADCs.

Hence, the analog MMSE filter Γ(f) is given by [19]

Γ(f) = FH(f)F(f)FH(f)
(
F(f)FH(f) + Cn(f)

)−1
,
(17)

where [F]n,m (f) is given by the FT of [F]n,m (t).
With the above, we evaluate the performance for N = 4

and M = 16, i.e., 4 transmit and 16 receive antennas. The
filter bandwidth is chosen as fnyq = 400 MHz. The channel
is modeled as F̃ = C

1/2
Rx Hch, where CRx ∈ RM×M models

the spatial correlation at the receiver; it is given by (cf. [24,
eq. (19)])

[CRx]m,n =

(
1− e−

√
2π/σφ

)−1

1 +
σ2
φ

2 (π(m− n))2
, (18)

where we use σφ = 1°. Moreover, Hch ∈ RM×N is assumed
to be known and fixed; it contains independent entries which
are generated randomly as [Hch]m,n ∼ N (0, 1). We set η(b) =
0.25b + 1.75, i. e., we increase the dynamic range with the
amplitude resolution (cf. (5)), in order to ensure the validity of
the model, which has been verified numerically. Furthermore,
we define SNR = 2

N0
tr
(
F̃F̃T

)
= 10 dB.

First, in Fig. 2, we evaluate the minimum achievable MSE
of the proposed system given by (14), which employs the MSE
minimizing analog filter Ho(f) given by (13) for Nyquist rate
sampling, i.e., fs = fnyq, when varying the number of bits
per sample b. For this evaluation, we set the number of ADCs
of the proposed system to K = N = 4. We compare the
performance to the alternative strategies of analog and digital
recovery, where we evaluate the corresponding MSEs using
(12). Observing Fig. 2, we note that digital recovery, which
utilizes 16 ADCs with b bits each, yields the lowest MSE. The
proposed task-based ADC, which uses only 4 ADCs of the
same resolution, namely, 75 % fewer bits, yields a marginally
higher MSE, while analog recovery results in the highest MSE.
This indicates that substantial resource savings can be achieved
by task-based acquisition with minimal effect on the overall
system accuracy.

Next we compare the MSE of the proposed system to analog
and digital recovery under a fixed rate budget R = K · b · fs.
For the proposed system we perform an exhaustive search
over all feasible combinations of b ∈ {1, . . . , 16} and K ∈
{1, . . . ,M}. For the analog and digital recovery systems, we

This document is a preprint of: P. Neuhaus, N. Shlezinger, M. Dörpinghaus, Y. C. Eldar, and G. Fettweis, “Task-based analog-to-digital converters
for bandlimited systems,” in Proc. European Signal Proc. Conf. (EUSIPCO), Virtual Conference (Dublin, Ireland), Aug. 2021.

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.



100 101 102

100

10−2

10−4

10−6

10−8

10−10

Rate budget R = K · fs · b [Gbps]

N
o
rm

a
li
ze
d
M
S
E

H(f) = IM

H(f) = Γ(f)

H(f) = Ho(f)

Fig. 3. Achievable MSE for a fixed rate budget R = K · b · fs.

1

2

3

4

N
u
m
b
e
r
o
f
A
D
C
s
K

100 101 102
1
2

4

6

8

10

12

14

16

Rate budget R = K · b · fs [Gbps]

B
it
s
p
e
r
sa

m
p
le

b

bo

Ko

Fig. 4. Evaluation of the MSE minimizing ADC configuration bo and Ko.
The optimal strategy increases the number of bits b first, before increasing the
number of ADCs K when increasing R.

only perform an exhaustive search over b, because K is fixed
to N and M , respectively. The sampling rate is then chosen
as fs = R

K·b , where combinations of R, b and K which result
in fs < fnyq are not considered. In Fig. 3 it can be observed
that the proposed task-based ADC system outperforms the two
competing architectures significantly over a wide range of rates
R. At a normalized MSE of 10−4, the proposed system requires
only approx. 47 % and approx. 14 % of the rate as compared
to analog and digital recovery systems, respectively.

Finally, in Fig. 4, we evaluate the combinations of b and K,
denoted as bo and Ko, which result in the minimum achievable
MSE for the proposed task-based ADC system, under a fixed
rate budget R, as depicted in Fig. 3. For the considered task,
the MSE is minimized for low rates by employing just a single
ADC, i.e., K = 1, and by choosing the amplitude resolution b
as high as possible. The optimal strategy mostly increases the
number of bits b first, before increasing the number of ADCs K
when increasing R. This result indicates that the quantization
error is the major source of distortion in the considered system.

V. CONCLUSIONS

In this work, we proposed a task-based acquisition system
for linear tasks under rate constraints. The proposed system
performs joint sampling using an analog filter, subsequent scalar
uniform quantization, and linear digital recovery of the task
vector. We obtained closed-form expressions for the minimum
achievable MSE and also for the optimal linear processing in
the analog and digital domain for a fixed number of ADCs, a
fixed sampling rate above the Nyquist rate, and a fixed quantizer
resolution. We have demonstrated significant gains in terms
of a digital rate budget for the proposed system compared to

completely analog or digital recovery strategies. An extension
to sub-Nyquist sampling is treated in [21].
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