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Abstract—Wireless communications systems beyond 5G are
foreseen to utilize the large available bandwidths above 100 GHz.
However, the power consumption of analog-to-digital converters
(ADCs) for such systems is expected to be prohibitively high,
because it grows quadratically with the sampling rate for high
amplitude resolutions. Shifting the resolution from the amplitude
to the time domain, i.e., by reducing the amplitude resolution and
by employing temporal oversampling w.r.t. the Nyquist rate, is
expected to be more energy efficient.

To this end, we propose a novel low-cost sub-terahertz system
employing zero crossing modulation (ZXM) transmit signals in
combination with 1-bit quantization and temporal oversampling
at the receiver. We derive and evaluate new finite-state machines
for efficient de-/modulation of ZXM transmit signals, i.e., for effi-
cient bit sequence to symbol sequence de-/mapping. Furthermore,
the coded performance of the system is evaluated for a wideband
line-of-sight channel.

Index Terms—1-bit, quantization, oversampling, faster-than-
Nyquist signaling, runlength-limited sequences

I. INTRODUCTION

Wireless communications systems beyond 5G are fore-
seen to utilize available frequency bands in the millimeter
wave (mmWave) and terahertz (THz) regime in order to
cope with the ever-increasing demand for higher data rates.
Especially the sub-THz band from 100GHz to 300 GHz
provides large amounts of free spectrum [1]. However, the
power consumption of the analog-to-digital converter (ADC)
is becoming a major issue for such wideband systems, be-
cause it grows quadratically with the sampling rate for high
amplitude resolutions [2]. At the same time, time-domain res-
olution is becoming superior to amplitude-domain resolution
in modern nanometer-scale CMOS processes [3], [4]. This
is mainly caused by reduced supply-voltages, which leave
less voltage-headroom for sophisticated amplitude processing.
Consequently, it is expected to be more energy efficient to
shift the resolution from the amplitude to the time-domain,
i.e., by reducing the amplitude resolution and by employing
temporal oversampling at the ADC. Furthermore, reducing the
amplitude resolution to just 1-bit seems especially promising
because it neither requires an automatic gain control nor a
linear low-noise amplifier, since all magnitude information is
lost after 1-bit quantization.

In this work we aim to design a low-cost wideband radio
access technology for sub-THz bands. To this end, we propose
to employ 1-bit quantization and temporal oversampling at the

receiver, which potentially reduces the ADC power consump-
tion significantly. The transmit signal is designed matched
to the 1-bit temporal oversampling receiver, by encoding the
information in the distances between zero crossings; a concept
which is denoted as zero crossing modulation (ZXM) [5]. The
high path loss at the considered frequencies requires the use
of antenna arrays at both the transmitter and the receiver. In
this work we focus on the receiver, which is assumed to be
equipped with an analog phase-shifter network (PSN), a single
RF chain, and a single 1-bit ADC for reduced cost and power
consumption. Due to the large bandwidth, the received signal
can change considerably while propagating across the antenna
array at the receiver for the considered wideband channels
in the mmWave and sub-THz bands. This effect is known
as spatial-wideband effect (SWE) and has to be taken into
account at the receiver [6].

Lower bounds on the spectral efficiency for systems em-
ploying 1-bit quantization and temporal oversampling are com-
puted numerically in [7] for an additive white Gaussian noise
(AWGN) channel. The achievable rate for a 1-bit quantized
continuous-time AWGN channel is investigated in [8], which
can be interpreted as the limiting case of infinite oversam-
pling. The spectral efficiency of multiple-input multiple output
channels with 1-bit quantization and temporal oversampling is
investigated in [9]. Synchronization for systems employing 1-
bit quantization and temporal oversampling is studied in [10],
bounds on the channel parameter estimator performance are
evaluated in [11] and [12]. 1-bit quantized temporal and spatial
oversampling, i.e., using multiple antennas, where each an-
tenna is equipped with a single 1-bit ADC employing Nyquist
rate sampling, are compared in [13] for a wideband line-of-
sight (LOS) channel. Moreover, a massive MIMO system
employing 1-bit quantization and temporal oversampling is
studied in [14]. Soft-output detection algorithms for frequency
selective mmWave MIMO systems with low-precision ADCs
employing Nyquist rate sampling are investigated in [15].

The main contributions of this work are as follows: i) design
and modeling of a wideband sub-THz system employing 1-
bit quantization and temporal oversampling at the receiver, ii)
derivation of two finite-state machine (FSM) runlength-limited
(RLL) sequence encoders for efficient encoding and soft-input
soft-output decoding and iii) a coded performance evaluation
of the proposed system for a wideband LOS channel.



,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

iTransmitter signaling rate % Channeli
€ z(t) | !
1 by ——|FEC enc RLL enc NRZI enc DAC (@) ‘ h(t) !
iReceiver sampling rate % n(t) [
. . | | Beaniformer] |
1 by — FEC dec. RLL dec. Equalizer " 1-bit ADC "0 g(1) ‘4_®47 Beamformer | |

Fig. 1. Overview on the system model, where b; corresponds to the input bits to be transmitted and i)l to their estimates at the receiver.

Fig. 2. State machine describing (d, k = oco) constrained sequences.

II. SYSTEM MODEL

An overview on the considered system model is provided
in Fig. 1. Transmit and receive filters are assumed to be
root-raised-cosine (RRC) filters, denoted by f(t) and g(¢),
respectively. Transmit beamforming is omitted because this
work focuses on the receiver design. Note that we assume
perfect synchronization and channel state information at the
receiver throughout this work.

A. Transmit Signal

The transmitter employs ZXM, which is a modulation
matched to receivers employing 1-bit quantization and tempo-
ral oversampling [5]. It is motivated by the fact that a receiver
employing 1-bit quantization can effectively only determine
when the received signal has a zero crossing, i.e., when the
signal amplitude changes from above zero to below zero or
vice versa. Hence, it is intuitive to encode the information in
the distances between zero crossings instead of the amplitude.

1) Runlength-Limited Sequences: One practical way of
generating ZXM transmit signals is to utilize RLL sequences
[16]. RLL sequences can be constructed from (d, k) sequences,
which are constrained binary sequences in which every 1 has to
be followed by at least d and at most k Os. The k constraint
is omitted here, i.e., Kk = oo, which maximizes the entropy
rate. The constraint is illustrated as a FSM in Fig. 2. A RLL
sequence can then be constructed by realizing an amplitude
transition at every 1 in the (d, k) sequence, as shown in the
following example:

(k) a=[.., 0, 1, 0, 1, 0, 0, 1,...
RLL a” =[..,-1, 1, 1,-1,-1,—-1, 1,...

]T
]T
where a™ € {—1,+1}" and m € N, denotes the length
of the sequence. The mapping from (d, k) to RLL sequences
is known as non-return-to-zero-inverse (NRZI) encoding. Note
that the d constraint effectively specifies the minimum distance
between two amplitude transitions.

A complex-valued transmit sequence can be constructed
from two real-valued independently modulated RLL sequences
a™ b™ e {-1,+1}™ as

1
X" =—(@"+;5b").
7 ( jb™)
The Ith element of x™ is denoted as z; € X

%, 1%7 *\1/%” , *\1/; } Encoding of information bits onto
RLL sequences is discussed in Sec. IIl. Using this, the
continuous-time transmit signal is given by

B(t) =Y af(t—ITy),
=1

(D

2

where Ty denotes the Nyquist interval.

2) Faster-than-Nyquist Signaling: Combining (2) with
faster-than-Nyquist (FTN) signaling [17], increases the time-
domain resolution at the transmitter and allows to produce
zero crossings on a finer grid. This can be used to increase
the achievable rate as proposed in [7]. The resulting modified
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where Mty € [1,00) denotes the FTN signaling factor. Note
that increasing the signaling rate increases the throughput, but
comes at the cost of self-introduced intersymbol interference
(IST). However, the amount of ISI can be controlled by the d
constraint of the RLL code.

B. Channel Model

We consider a single antenna transmitter and a receiver
which is equipped with a uniform rectangular array (URA)
with a total of N = Ny,-N, antennas, where NV}, and IV, denote
the number of horizontal and vertical antennas, respectively.
The channel is assumed to be LOS and characterized by the
angles-of-arrival (AoAs), i.e., the azimuth angle ¢ € [—m, )
and the elevation angle § € [~7, 7). Under the far-field
assumption, the propagation delay between the nth receive
antenna and the center of the URA can be defined as

Tn = %k(d)ag)T (un*ﬁ)v neN:{l”N}’ (4)

3)

where ¢ denotes the speed of light,

cos 6 cos ¢
cos 0 sin ¢
sin 6

k(o,0) = (5)
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Fig. 3. The wideband received signal is added mcoherently after passing
through the PSN, because delays are not compensated.
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corresponds to the wave vector up to a scaling factor, and
u,, € R? and 0 € R? define the position of the nth antenna
and the center of the URA, respectively. They are given by

0 0
mod(n—l,Nh)dh , u= (No—L)dn

2
[(n = 1)/Nu] dy oty

(6)

u, =

where d}, and d, denote the horizontal and vertical antenna
spacing, respectively. Then, in baseband the wideband channel
from the transmitter to the nth receive antenna is given by

ho(t) =6 (t — 1) e 2™ pe N @)

where f. denotes the carrier frequency.

The baseband channel model in (7) effectively consists of
a time and a phase shift, both of which are caused by the
physical propagation delay. Due to the time shift the received
signal at different antennas can correspond to different transmit
symbols. This effect is known as SWE [6]. Note that ignoring
the time-shift, i.e., assuming h,,(t) ~ e~72™/<™ is known as
narrowband assumption, which does not hold for the targeted
wideband channels in the mmWave and sub-THz regime.

C. Beamformer

Because we consider a low-cost system, the receiver is
assumed to be equipped with an analog PSN, i.e., a digitally
controllable phase shift is applied to the received signal of
each antenna before the signals of all antennas are superim-
posed in the analog domain. We assume phase shifters with
infinite precision which realize pure phase shifts, i.e., they
do not introduce any additional time delay'. The phase shift
introduced by the nth phase shifter is denoted as e/¥~, n € N,
In order to compensate the phase shift which is introduced by
the channel, the phase shift at the nth antenna is chosen to

wn = 27ch7—n~ (8)

Note that the PSN is not able to compensate any delays.
Consequently, the signals of the different antennas are added
up incoherently in the analog PSN, which introduces additional
ISI. Fig. 3 illustrates this effect.

IThis corresponds to reflection-type or vector modulator implementations.

D. Received Signal

Utilizing the FTN transmit signal from (3) and the wideband
time domain channel model from (7), the received signal at
the nth antenna is given by

Un () = @(t) * hyp (t) + 7 (t)
- IT,
=3
=1 MTX
where 7,,(t) denotes the AWGN process at the nth antenna.

After beamforming and receive filtering by g(t), the received
signal is given by

)
Tn> eI feTn 4 T (t),

N
t) = (Z (1) ejw") % g(t) (10)
n=1
- ;m <t ]\ZTT) + a(t) * g(t),
with
N
At) =D fin(t) el (11)
n;l
o(t) =D v (t—my)dWn2leT), (12)

n=1 =1

where v(t) = f(t) % g(t) denotes the combined transmit and
receive filter. ¥(t) can be understood as the effective filter,
which captures the effects of beamforming and incoherent
analog addition.

Sampling the received signal y(¢) with rate My /Ts, where
Mgy denotes the temporal oversampling factor w.r.t. the
Nyquist rate, yields

Z - T ‘n kT . kT
U= : MRX MTX Mgy g Mpy '

(13)
Afterwards, 1-bit quantization is applied independently to the
real and imaginary part of the received signal, which yields

T = Q1 (Yr) (14)

= P + Jqk,

with

pr = sign (R{yr}), ar = sign (IH{ye}), (15)

where the real and imaginary operators are denoted by R{-}
and J{-}, respectively.

E. Generic Discrete Time System Model

Assuming an integer effective oversampling factor M € N
defined as M = %Rx > 1, a generic discrete time system
model can be obtained as

r, = Q1 (VUX;_, +ny),

where k& denotes the transmit symbol index and we use the
notation xf_, = [2h—r,...,2%]". The vector r, € CM
contains M complex 1-bit quantized samples which are as-
sociated with x, but also depend on the L previous transmit

(16)



symbols. Hence, L is referred to as memory length (measured
in transmit symbols) of the ISI channel. The effective filter
matrix V € CM>*M(L+1) s a Toeplitz matrix defined as

[(vI] o0 0
_ |0 [v]] 00
V= o ) (17
0 0[]
with
[ (K T (TN
v, —[11(2MRX>,...,U<MRX),1)<O), (18)

o (- oK L
Mpx ) 2 Mpx )|’

where K = LM is assumed to be even. Furthermore, U €
RM(LA1)xL+1 g an upsampling matrix which inserts M — 1
zeros after each element of x§_, and is defined as

fori=14+(G—-1)-M

(19)
else,

withi e {1,...,M(L+1)},j €{l,...,L+1}. The AWGN
noise process at the receiver is denoted by ng, which is corre-
lated for MRy > 1 because of receive filtering and temporal
oversampling. For a RRC receive filter, the covariance matrix
3., of ng is given by, cf. [18, eq. (9-2-27)],

_ opsin(mli — j|/Mgx) cos (nfBli — j|/Mpx)

w3 = O | Mree 1— (2Bl — j1/Mrs)?
(20)

where 3 and o2 = % denote the rolloff factor and the noise
variance, respectively.b The combined receive vector after 1-bit
quantization is defined as ¥ = [rlT, . .Jﬁ}T, with m =
m M.

For detection it is useful to convert the complex-valued
generic discrete time system model from (16) to an equivalent
real-valued system model as follows

Sed] = (b = (v o]+ i) Zgn

3]

where ~
R{VU}

J{VU} 22)

v [ —J{VU}] |

R{VU}

III. ENCODING OF RUNLENGTH-LIMITED SEQUENCES

The maximum entropy, i.e., the capacity C(d, k), of RLL
codes is limited due to the (d,k) constraint [16]. RLL en-
coding is usually implemented using either block codes or
FSM encoders. In this work we focus on the latter, because it
enables code rates which are close to the capacity as well as it
allows for efficient encoder and decoder implementations [19].
Note that RLL encoding using a FSM is somewhat similar to
encoding of convolutional codes.

Table I: Finite-state machine encoder for (1,00) RLL con-
straint with code rate Rrrr, = 2/3.

Current state | Input | Output | Next State
00 001 1
1 01 010 2
10 000 3
11 010 3
00 100 2
2 01 000 3
10 100 3
11 000 2
00 010 2
3 01 010 3
10 101 1
11 001 1

Table II: Finite-state machine encoder for (2,00) RLL con-
straint with code rate Rrrr, = 1/2.

Current state | Input | Output | Next State
1 0 00 3
1 00 4
0 01 1
2 1 00 3
0 01 1
3 1 10 2
0 00 3
4 1 00 4

Table III: Comparison of RLL finite state machine encoders.

RLL const. Capacity [16] FSM code rate Efficiency
(d, k) C(d, k) [bit/symbol] | Rgrry [bit/symbol] n
(1, 00) 0.6942 2/3 0.96
(2, 00) 0.5515 12 0.91

FSM encoders can be obtained from the RLL constraint
definition (cf. Fig. 2) using the ACH-algorithm® [20]. The al-
gorithm is graph-based and allows to construct FSM encoders
with a rate p/q < C(d, k), p,q € N,. The construction starts
with the constraint graph for all valid runs of length g. In
each iteration a single node is split into two successors. The
choice of node and edge splitting is guided by approximate
eigenvectors. The algorithm terminates when each node in the
graph has at least 2P outgoing edges. The reader is referred to
[19] for more details.

We derived two RLL FSM encoders for d = 1 and d = 2
using the ACH-algorithm, which are defined in Table I and
Table II, respectively. Table III provides a comparison of
the encoder parameters. The encoder efficiency n = é?&f,g)
measures how close the code rate of the encoder is to the
capacity.

IV. RECEIVER

The receiver consists of 3 digital signal processing blocks
(cf. Fig. 1): Firstly, the equalizer performs maximum a poste-
riori (MAP) symbol detection in order to equalize the ISI,
which is caused by the effective filter and FTN signaling.
The equalizer provides soft information, i.e., log-likelihood
ratios (LLRs), for each RLL symbol. Note that obtaining soft-
information is challenging after 1-bit quantization, however, it

2 Also known as state-splitting algorithm [19].



is essential in order to profit from the performance of modern
forward error correction (FEC) schemes. Secondly, the RLL
decoder performs soft-input soft-output decoding of the RLL
code. Finally, the FEC decoder decodes the channel code using
soft information provided by the RLL decoder.

A. Soft-Ouput Equalizer

The MAP symbol detection problem for the equalizer can

be formulated as
Iy = arg gjgﬁ P (;vk|r ) . (23)

For an efficient implementation, it is necessary to find a

factorization of the a posteriori probability (APP) P (x[r™).

Using Bayes’ theorem, it holds
P (r771,|xm> P (xm)

P (x™|r™) = 24
(<"r™) ) (24)

The a priori probability P (x™) can be factorized as
P(x™)=P(@")P([b") (25)

m

i

(ax]a® 1) P(by|bF 1),

where P(ay|a*~!) and P(by,|b* ') can be obtained from the
state transition probability of the underlying RLL sequence.
In order to obtain a tractable factorization for P (r™|x™),
the temporal noise correlation between received signal vectors
corresponding to different transmit symbols, e.g., between ry,
and rg41, is neglected. Then, P (r™|x™) can be factorized as

P (rm\xm) =P (pm|xm) P (qm|xm) (26)
~ HP(pk|xk)P(qk|xk), 27
k=1
where
P (pk|xk) = / P (zk\xk) dz,,. (28)
’P]\/I

k

Therein z; denotes the real part of the quantizer input, the
integration region PM = Py 1 x ... x Py is defined by the
output of the quantizer according to

_ (_0070)7
ﬂ”_{me

f om = —1
OF Phn . me{l,...,M},
for Prkm = +]-a

(29)
and the probability density function (PDF) P (z;|x*) is given

by

1
P (zi|x") = Woaon (30)
X exp (- (z1 — HR(Xk))T B, (zr - NR(Xk))) ;
with mean
pn(h) = = [V} —avoy] o] e

P (qi|x*) is defined similarly. Inserting (25) and (27) into
(24) yields the APP factorization

P (x™r™) &
T P (pylxt) P (aylx) Plaglat) P(belb" )
p(rm) !

k=1
1) BCJR Algorithm: MAP symbol detection can efficiently
be implemented using the BCJR algorithm [21]. The algorithm
works on a trellis, where each state s;, € S at time instant & is
defined by the previous real and imaginary input of memory
length L, such that

(32)

k—1
k— L:| . (33)

; A[
k=1 = | k-1

by 1
Because of QPSK symbols the number of trellis states |S]
is limited by |S | <4l Omitting states which correspond to
sequences a,C I and b}~! which violate the RLL constraint
allows to reduce the number of states for d > 0. The
state transition probability 4 (sg—_1, Sk) between two states
Sk—1, Sk € S at time instant k& depends on the observations ry
and is defined as

Vi (Sk—1,5k) = P(r|sk—1, sk)P(sk|sk—1) (34)
~ P (pilx*) P (qi[x*) P(axa" ") P(be[b""1),  (35)

where (35) is due to (27). Utilizing (34), the BCJR algorithm
performs forward and backward recursions through the trellis,
which are defined as

a(sk) = Z a(sk—1)Vk(SK-1, k) (36)
Sp—1E€S
and
Blsk) = Y Blsks)Ves1(sk, ski1), 37)

Sg+1E€ES

respectively. Note that the recursions have to be initialized
appropriately, e.g., by starting and terminating in known states.
A factorization of the joint probability can be obtained by
combining (34), (36) and (37) to

r") = a(sk—1)Vk(Sk—1, sk)B(sk). (38)

Let the sets S, and S, define the state pairs (s;—1, s) which
result in a transmit symbol at time index k of a; = +1 and
ar = —1, respectively. Similar definitions hold for 8; and
S, with respect to by. Then, the joint probability in (38) can
be used to compute logarithmic APP (log-APP) ratios

Z(s,s/)esj P(sg—1 = 5,5, =5 ,r")
Z(s,s')esg P

which provides soft information for each RLL encoded bit
of the real part. Log-APP ratios for the imaginary part can
be obtained similarly. Both sequences can be processed in-
dependently afterwards. Note that the proposed equalizer is
somewhat similar to the guantized BCJR [15]. However, the
proposed equalizer uses the RLL constraint to reduce the
number of trellis states and transitions and also allows for
temporal oversampling.

P(Sk}—h Sk

L(ay) = log (39)

(Sk—1 =8,8, =8 ,rm)’



Table IV: Extended FSM encoder for joint RLL and NRZI
encoding derived from the RLL encoder defined in Table II.

Current state | Input Output Next State

1 0 +1+1 34+
+ 1 +14+1 4,
9 0 +1-1 1_
+ 1 +1+1 3.
3 0 +1-1 1_
+ 1 -1-1 2_
0 +1+1 3+

4+ 1| +1+1 4y
1 0 —-1-1 3—
B 1 —-1-—-1 4_
9 0 -1+1 14
- 1 —-1-1 3_
3 0 —-1+1 14
B 1 +1+1 24
0 -1-1 3_

4- 1 -1-1 4_

B. Soft-Input Soft-Output Decoding of RLL Codes

We propose to implement joint soft-input soft-ouput NRZI
and RLL decoding, which can be implemented efficiently
using an extended version of the FSM representation of the
encoders. For each state in the original FSM, the extended
FSM contains two states, each of which is associated with the
current sign of the RLL sequence, i.e., +1 or —1, which is
denoted as (-)1 and (-)_, respectively. The output is computed
by NRZI encoding using the sign which is associated with
the current state. An example for the extended FSM which
is derived from the FSM encoder of Table II is provided in
Table IV. This approach avoids to compute soft-information
for transitions, i.e., by soft-input soft-output NRZI decoding,
at the cost of doubling the number of states and transitions
in the FSM decoder. Since both FSM encoders have a small
number of states the resulting size of the extended FSMs, i.e.,
6 and 8 states, is still low. Joint soft-input soft-output NRZI
and RLL decoding can then straightforwardly be implemented
on the extended FSM using the BCJR algorithm [21].

V. NUMERICAL RESULTS

Numerical results in this section are obtained assuming RRC
transmit and receive filters with a bandwidth 1;—?, a rolloff
of # = 1, and truncation after 100 Nyquist intervals. The
effective filter in the equalizer is truncated once the coefficients
fall below 5% of the maximum using an auxiliary channel
law, similar to [22]. The RLL constraint is always chosen as
(d = Mrx — 1,k = o0). This choice ensures a minimum
distance of T between two zero crossings which enables the
continuous-time transmit waveform to reach its full amplitude
between all transitions. We expect that this choice enhances
the system’s robustness against noise. The performance is
evaluated for the lowest new unlicensed FCC band with
a carrier frequency f. = 119.5GHz and a bandwidth of
T% = 7GHz [23]. The URA at the receiver is assumed to
be of size Ny = N, = 8, with antenna spacing dy, = d,, = ’\7
where A\, = -, such that it consists of N = 64 antennas.
The azimuth and elevation AoAs are assumed to be uniformly

distributed over [—%, Z]. The channel and beamformer are
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Fig. 4. Performance comparison of proposed d = 1 RLL FSM code from
Tab. I and block code from [16, Tab. 4] for Mp, = 2.

normalized such that both result in unit gain, i.e., there is no
path loss and no beamforming gain. We evaluate the average
performance for 4 - 103 independent realizations of ¢ and 6.
As FEC scheme we employ the 5G NR LDPC code from
the MATLAB 5G Toolbox, including cyclic redundancy check
(CRC) coding, code block segmentation, rate matching, and
rate recovery. All results are obtained for the LDPC base graph
1 and an information block size of Kpgc = 8448 at the FEC
encoder input.

A. Comparison of Proposed RLL FSM to RLL Block Code

First we compare the performance of the proposed FSM
RLL code from Tab. I to a well known fixed length RLL block
code with a constraint of (1,00) and a rate of Rgyy, = 0.6
from [16, Tab. 4]. The code achieves an efficiency of n =
CI?{"L(;) ~ 0.86 and is therefore 10 % less efficient than the
propose FSM code (cf. Tab. III). Soft demapping is performed
by first computing the probability of each RLL code word
conditioned on the input. From these it is straightforward
to compute LLRs for each encoded information bit. The
performance of both codes is evaluated with respect to the
block-error ratio (BLER) in Fig. 4. The proposed FSM code
outperforms the block code by approx. 0.1dB to 0.2dB at a
BLER of 10~2 although it achieves a higher rate.

B. Coded System Performance Evaluation with FSM Codes

The gain of oversampling w.r.t. the signaling rate is investi-
gated in Fig. 5 for Mty = 2. Increasing Mgy from sampling
at signaling rate to 3-fold oversampling w.r.t. the signaling rate,
ie., from M =1 to M = 3, yields approx. 0.5dB to 0.8dB
gain at a BLER of 1072, The gain decreases slightly with
decreasing code rate. Furthermore, oversampling increases the
slope of decay for Rrrc € {%, %}.

The performance for different FTN signaling rates My
is compared in Fig. 6. Increasing the signaling rate requires
approx. 1.3dB to 2.3dB increase in F}, /Ny in order to
achieve a similar performance at a BLER of 1072, Results
are less smooth and steep for Mty = 3 and Rppc € {%, %},
which could be caused by increased ISI. Regarding the shown
number of information bits per Nyquist interval note that
the resulting spectral efficiency also depends on the power
spectral density of the RLL sequence, which becomes more
narrow for increased d constraints [16].
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proposed FSM code with d = 1.
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Fig. 6. Performance comparison of FTN signaling factors Mty for M = 3
using the proposed FSM codes with d = 1 and d = 2. Arrows indicate the
number of information bits which can be transmitted per Nyquist interval T.

For the considered frequency band, 2 bit/Ts corresponds to a data rate of
14 Gbit/s.

VI. CONCLUSIONS

In this work we proposed two FSM RLL codes for an
efficient implementation of ZXM. The performance of the
proposed FSM RLL code with constraint (d = 1,k = o0)
was found to be superior as compared to a standard block
code. Utilizing these codes in combination with FTN signaling
and temporal oversampling, we proposed a system which is
able to obtain soft information at the receiver after 1-bit
quantization. The coded performance of the proposed sub-THz
system has then been evaluated for a wideband LOS channel.
An extension to more realistic channel models remains open.
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