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Abstract— In their fundamental paper, Cover and El Gamal
presented three basic coding strategies –decode-and-forward,
compress-and-forward and a mixed strategy based on partial
decode-and-forward and compress-and-forward – which are still
the basis for many recent relaying protocols. So far, only parts
of their work are applied to networks of relay nodes, e. g., the
decode-and-forward as well as compress-and-forward approach.
This work generalizes a mixed approach of partial decode-and-
forward and compress-and-forward to networks of relay nodes.
We further highlight how the “successive refinement problem”
and the “broadcast channel problem with degraded message sets”
are applied in our approach. Finally, we formulate achievable
rates for the discrete memoryless relay channel consisting of two
relay nodes.

I. I NTRODUCTION AND MOTIVATION

We can observe a growing importance of infrastructure
based wireless communications systems as well as ad hoc
networks in present-day telecommunications. The popularity
of mobile terminals poses the question how to exploit a
network of wireless terminals to increase for instance capacity
and coverage or to reduce usage of backhaul infrastructure.
One answer to this question is to userelay nodessupporting
the end-to-end communication between two nodes.

This idea of relaying goes back to van der Meulen [1], [2].
Cover and El Gamal refined this idea in [3] and presented three
basic coding strategies for the three-terminal case:decode-and-
forward (DF), compress-and-forward(CF) as well as amixed
strategycombiningpartial decode-and-forwardand compress-
and-forward. In recent publications the analysis of the three-
terminal case was extended to the multi-terminal case: Kramer
et al. presented in [4] different coding strategies for networks
of relay nodes, e. g., a generalized DF and CF for relay
networks as well as a mixed strategy where each relay node
uses either DF or CF. Gupta and Kumar generalized in [5] the
DF approach presented in [3] to a multi-level relaying scenario
which serves as the basis for our proposal. However, to the
authors’ knowledge, no strategy was published so far which
generalizes the mixed strategy based on partial DF to a relay
network such that each node operates in a mixed mode.

We apply in this work the approach of [5] to the mixed
strategy presented in [3, Theorem 7] for the three-terminal
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Fig. 1. The information flow of the mixed approach using partialdecode-
and-forward. Arc labels show which information is exchangedbetween nodes
and node labels show the channel outputs and decoded symbols.

case. The mixed strategy based on partial DF divides the
source message into two parts:U1 andU2 where the former
one can be decoded without knowledge ofU2. As illustrated
by the information flow in Fig. 1, relay noder only decodes
the first source messageU1 for which it selects a message
index using the random binning procedure introduced in [6].
This index determines the support messageV transmitted by
the relay node (which is also known to the source node). Using
Ŷr the relay node quantizes the remaining uncertainty about
U2 in its channel outputYr. This quantization is used to select
some index which determines the second relay messageW.

The destination noded decodes the support messageV
which provides redundant information such that the source
messageU1 can be decoded. Using the messageW and the
correlation between the relay and destination channel output
the destination decodes the quantizationŶr (a strategy similar
to Wyner-Ziv coding [7], [8]). With this quantization the
destination can decode the second source messageU2.

Our approach now generalizes this protocol by introducing
N + 1 degraded source messages. Each messageUk is only
decoded by a subset of all relay nodes whereas each nodel

of this set determines a supporting messageVk
l . Furthermore,

these nodes transmit successively refined quantizations oftheir
channel output to those relays which decode the messagesUk′ ,
k′ > k. After a detailed definition of our nomenclature and
used network model in Section II, we describe this general
approach in more detail in Section III. Finally, we conclude
the paper with an outlook in Section IV.

II. RELAY NETWORK MODEL AND NOMENCLATURE

In the following we will use non-italic uppercase letters
X to denote random variables, non-italic lowercase lettersx
to denote events of a random variable and italic letters (N

This document is a preprint of: P. Rost and G. Fettweis, “A Generalized Mixed Strategy for Multiterminal Relay Networks,” in Proceedings of IEEE
Information Theory Workshop (ITW 2007), Lake Tahoe, USA, Sep 2007. DOI:10.1109/ITW.2007.4313102

© 2007 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



or n) are used to denote scalars. Ordered sets are denoted
by X , the cardinality of an ordered set is denoted by‖X‖
and [b; b + k] is used to denote the ordered set of numbers
(b, b + 1, · · · , b + k). Let Xk be a random variable parameter-
ized usingk thenXC denotes the vector of allXk with k ∈ C
(this applies similarly to sets of events). Furthermore, wewill
use in the followingp(x|y) to abbreviate the conditional pdf
pX|Y(x|y) if this does not create any confusion.

This paper considers a network ofN +2 nodes: the set ofN
relayst ∈ R := [1;N ], the destination noded = N+1 and the
source nodes = N+2. The discrete memoryless relay channel
is defined by the conditional pdfp (yR, yd|xs,xR) over all
possible channel inputs(x1, · · · , xN , xs) ∈ X1 × · · · XN ×Xs

and channel outputs(y1, · · · , yN , yd) ∈ Y1×· · · YN×Yd with
Xi andYj denoting the input and output alphabets.

Remark 1: In comparison to the multi-level approach in [5]
we concentrate in this paper on the case that each level/group
consists of one relay node. Section III-D addresses upcoming
issues if we group the relay nodes to disjoint sets.

Let π(X ) be the set of all permutations of a setX . The
source chooses an orderingos ∈ π([1;N + 1]) where os(l)
denotes thel-th element ofos and os(N + 1) = N + 1. For
the sake of readability we abbreviate in the followingYos(l) by
Yl and the relay nodeos(l) by l or as thel-th level. Besides,
each relayl introduces an orderingol ∈ π([l+1;N+1]) where
ol(i) indicates nodeos(ol(i)) and the channel output of this
node is denoted byYl,i. We further use in the following the
function φl to denote the inverse ofol, i. e., ol(φl(i)) = i.

III. A GENERALIZED MIXED PARTIAL DF APPROACH

In our proposal the following messages are considered:
• the source messagesUk, k ∈ [1;N + 1], with ratesRk

s ,
• the messagesVk

l sent by levell at rateRk
l to assistUk,

• the quantizationŝYk′

l , k′ ∈ [1;Ml] with Ml = N − l+1,
and the corresponding broadcast messagesWk′

l .
The partial messageUk is decoded by each levell ≥ k. To
support the source message the relays, i. e.,l ≤ N , assign
to each partial message an indexVk

l obtained using random
binning [6] and transmit it to each levell′ > l. Levels l′ > l

useVk
l to decode the respective partial source message.

Furthermore, each relay levell estimates the remaining
uncertainty in its receive vector using the quantizationsŶk′

l ,
k′ ∈ [1;Ml] at distortion Dk′

l = d(Ŷk′

l ,Yl) where d(·, ·)

denotes a suitable distortion measure andDk′

l > Dk′+1
l

holds. These quantizations are assigned to the messagesWk′

l .
Level ol(i), i ∈ [1;Ml], decodes all messagesW[1;i]

l and
quantizationsŶ[1;i]

l , respectively. We will further explain in
the sequel the mentioned quantization task, which is known
as the successive refinement problem with multiple descriptors
and (in general) unstructured side information. Besides, the
messagesWk

l need to be transmitted to the respective levels
which is similar to the broadcast channel problem.

A. The successive refinement problem

Koshelev [9] and later Equitz and Cover [10] independently
introduced the problem of successive refinement as a special
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Fig. 2. The information flow in our proposal forN = 2. The source transmits
in orderos = {1, 2, d} the partial messagesU[1;3] and the first relay chooses
ol = {d, 2} for the quantization of the receive vector.
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l

Yl,1

Yl
b

b

b

R̂1
l

b
b

R̂2
l

R̂Ml

l

Fig. 3. The successive refinement problem as it emerges in our protocol.
Yl needs to be quantized by encodersfl,1, · · · , fl,Ml

at different distortions
and to be decoded by decodersgl,1, · · · , gl,Ml

, Ml = N − l+1, which can
exploit unstructured side informationYl,[1;Ml]

.

case of the more general multiple description problem [11].
Fig. 3 illustrates the successive refinement problem as it
emerges in our proposal. The channel output of levell, i. e.,Yl,
has to be encoded and transmitted to nodesol(i), i ∈ [1;Ml].
At first the channel output is estimated by a quantizationŶ1

l

using ∆1
l = RYl

(D1
l ) bits per symbol, whereRYl

(D) is
the rate-distortion function for some given distortionD. This
estimation needs to be decoded by all nodesol(i). Since these
nodes can exploit (in general unstructured) side information
Yl,i, the necessary ratêR1

l ≤ ∆1
l to describeYl at distortion

D1
l is the well known Wyner-Ziv source coding problem [7],

[8], i. e., R̂1
l = max

i∈[1;Ml]
RWZ

Yl|Yl,i
(D1

l ), where RWZ
·|· (·) is the

Wyner-Ziv rate-distortion function as defined in [8]. In the
next refinement step all levelsol(i), i ≥ 2, additionally decode
the more accurate description̂Y2

l with D2
l < D1

l . To describe
the refined quantization̂Y2

l additional information at ratêR2
l

must be provided. Again from rate-distortion theory we know
that R̂2

l + R̂1
l ≥ max

i∈[2;Ml]
RWZ

Yl|Yl,i
(D2

l ).

In [9], [10] the Markovity condition to achieve rate-
distortion optimal successive refinements is derived. In our
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Fig. 4. The broadcast channel problem considered in our work. The indices
z
[1;k]
l

are determined by the Wyner-Ziv coding of the quantizationsŶ
[1;k]
l

and need to be decoded by receivergl,k, · · · , gl,Ml
, Ml = N − l + 1.

setting this implies the Markov chainYl ↔ ŶMl

l ↔ ŶMl−1
l ↔

· · · Ŷ1
l . With this condition we can ensure that̂Yk′

l is at
least for one nodeol(i), i ≥ k′, rate-distortion optimal,
i. e.,

∑k′

i=1 R̂i
l = max

i∈[k′;Ml]
RWZ

Yl|Yl,i
(Dk′

l ). For the case of

no side information, Equitz and Cover show in [10] that
this Markovity condition is necessary and sufficient for rate-
distortion optimality in each refinement step. Our setup is a
special case of the general setting presented by Heegard and
Berger in [12, Theorem 2] for which an upper bound on the
rate region is known. So far it is unresolved whether this bound
is tight.

B. The broadcast channel problem

In this subsection we treat the difficulties of transmitting
the quantizations of levell, i. e., Ŷ

[1;Ml]
l , to the nextMl

levels. Fig. 4 illustrates the problem: the message indices
(z1

l , . . . , zMl

l ), zk′

l ∈ [1; 2nR̂k′

l ], are determined by the quan-
tizationsŶ1

l , . . . , Ŷ
Ml

l using a random binning procedure. As
previously mentioned, nodesol(i), i ∈ [k′;Ml], need the
indices(z1

l , . . . , zk′

l ) to successfully decode the quantizations
Ŷ1

l , . . . , Ŷ
k′

l . Obviously, this is a broadcasting problem as
introduced by Blackwell and later described in detail by Cover
[13]. Our problem is characterized by a degraded message set
W

[1;Ml]
l , which was analyzed by K̈orner and Marton [14].

Later, Csiszar and K̈orner further investigated this problem as
the “asymmetric broadcast channel” [15].

To communicate the message indicesz
[1;Ml]
l , relay level

l transmits the messagesWk′

l , k′ ∈ [1;Ml], which in our
proposal build the Markov chainW1

l ↔ W2
l ↔ . . . WMl

l ↔
(Yl,1, . . . ,Yl,Ml

) (this is not a necessary condition but it
simplifies the expressions in the sequel). Using the resultsof
[14] we can intuitively state that

R̂k
l ≤ min

i∈[k;Ml]
I

(

Wk
l ; Yl,i|W

k−1
l

)

(1)

is an achievable rate region for our problem. As explained in
[16, Corollary 5], (1) is included in the capacity region forthe
case ofMl = 2: R̂1

l ≤ I(W1
l ; Yl,1), R̂2

l ≤ I(W2
l ; Yl,2|W

1
l )

and R̂1
l + R̂2

l ≤ I(W2
l ; Yl,2) [14]. In the special case that

Yl,2 is not “less noisy” thanYl,1 [14], i. e., I(W1
l ; Yl,1) >

I(W1
l ; Yl,2), we need to introduce a time-sharing and auxiliary

random variable to achieve capacity [15]. Since the generaliza-
tion of this method to prove the capacity region of our setting
is beyond the scope of this paper we use (1) in the sequel.

C. Achievable rates forN = 2

In this subsection we apply the previously presented results
to describe the encoding and decoding procedure of our
proposal in more detail for the case ofN = 2 relay nodes.
The application of this proposal toN > 2 relay terminals is
straightforward but unnecessarily complicates the derivations.

Basically, our protocol represents a multi-hop implementa-
tion of the mixed strategy based on partial decode-and-forward
presented in [3, Theorem 7]. Consider the partial source
messagesU[1;3] transmitted in blockb. Level 1 decodesU1

and uses it to determine the messageV1
1 by assigning to each

possible source message a bin index. This bin index is used to
select the relay messageV1

1 (a well known method introduced
by Slepian-Wolf [6]). This random binning is slightly different
for the next level2: instead of assigning the index randomly
to the source messages it assigns the indices to the bins of
the first relay level. Since level2 supports in blockb + 1 the
same source message as level1 in block b, we can ensure that
level 1 knows in each block the messageV1

2 [5]. Using the
decoded messagesV1

1 andU1 level 1 quantizes the remaining
uncertainty in the receive vectorY1 using the quantizations
Ŷ

[1;2]
1 which determine the broadcast messagesW

[1;2]
1 .

In the next block(b + 1) relay 2 decodes the supporting
messageV1

1 and uses the additional information to decodeU1

sent in blockb. With this knowledge the second relay can de-
code the quantization indicesW[1;φ(1,2)]

1 and the quantization
dedicated to level2, i. e., Ŷφ1(2)

1 . Using this quantization and
the own channel outputY2 in block b the relay is able to
decode the second partial source messageU2. Knowing this
partial message and the indices transmitted by the previous
relay level, it further quantizes the remaining uncertainty in Y2

by Ŷ1
2 and determinesW1

2. Furthermore, this level assigns the
supporting messagesV[1;2]

2 to both source messages whereV1
2

is determined using the set inclusion method described above.
Finally, the destination decodes in blockb + 2 at first the

messageV1
2 and uses it to decode messageV1

1 transmitted in
block b + 1. That followed, the destination is able to decode
the first partial source messageU1 sent in blockb. In the next
step, it decodes the relay messageV2

2, the quantization̂Yφ1(3)
1

and using both also the source messageU2. Finally, it uses
the quantizationŝYφ1(3)

1 , Ŷ1
2 and the channel outputYd in

block b to decode the source messageU3 sent in blockb. The
information flow of this proposal is shown in Fig. 2. A more
detailed description of a random coding scheme is given in the
Appendix which outlines the proof of the following theorem.

Theorem 1:The final rateR =
∑3

l=1 Rl
s is given by

R = max
os∈π([1;3])

max
o1∈π([2;3])

sup
p

3
∑

k=1

Rk
s (2)

where the maximum is taken over all possibleos ando1. The

This document is a preprint of: P. Rost and G. Fettweis, “A Generalized Mixed Strategy for Multiterminal Relay Networks,” in Proceedings of IEEE
Information Theory Workshop (ITW 2007), Lake Tahoe, USA, Sep 2007. DOI:10.1109/ITW.2007.4313102

© 2007 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



rates of the partial messages are given by

R1
s < min

(

I(U1; Y1|V
1
2 ,W 2

1 ),

R1
1 + min

l∈[2;3]
I(U1; Yl|W

φ1(l)
1 ,W1

2)
)

,
(3)

R2
s < min

(

I(U2; Y2Ŷ
φ1(2)
1 |W1

[1;2]W
φ1(2)
1 V1

2U1),

I(U2; Y3Ŷ
φ1(3)
1 |W1

[1;2]W
φ1(3)
1 V1

2U1) + I
(

V2
2; Y3|V

1
2

))

(4)

and

R3
s < I

(

(U3; Y3Ŷ
φ1(3)
1 Ŷ1

2|U2U1W
1
[1;2]W

φ1(3)
1 V1

2

)

, (5)

subject to the side condition on the first relay transmission

R1
1 < min

(

I
(

V1
1; Y2|W

1
2

)

, I
(

V1
1; Y3|W

1
2

)

+ I
(

V1
2; Y3

))

,

(6)
the successive refinement conditions for level1

R̂1
1 > max

l∈[1;2]
I(Ŷ1

1; Y1|V
1
2W

[1;l]
1 U1Y1,lW

1
2) (7)

R̂1
1 + R̂2

1 > I(Ŷ2
1; Y1|V

1
2W

[1;2]
1 W1

2U1Y1,2), (8)

the Wyner-Ziv condition on the quantizations of level2

I
(

Ŷ1
2; Y2|W

1
[1;2]U2

)

< I(W1
2; Y3|V

2
2)

+

{

I(Y3Ŷ
2
1; Ŷ

1
2|V

1
2W

1
[1;2]U[1;2]), if φ1(3) = 1,

I(Y3Ŷ
2
1W

2
1; Ŷ

1
2|V

1
2W

1
[1;2]U[1;2]), otherwise,

(9)

and the broadcast conditions

R̂1
1 < min

l∈[1;2]
I(W1

1; Y1,l|V
1
1,W

1
2) (10)

R̂2
1 < I(W2

1; Y1,2|W
1
[1;2]). (11)

The supremum in (2) is taken over all joint pdf

p(u[1;3], v
1
1,w

[1;2]
1 , ŷ

[1;2]
1 , v

[1;2]
2 ,w1

2, ŷ
1
2, y[1;3]) = p(u[1;3])

·p(v1
1,w

[1;2]
1 )p(ŷ

[1;2]
1 |y1,u1,w

1
1, v

1
2)p(v2[1; 2],w1

2)

·p(ŷ1
2|y2,u2,w

1
2,w

1
1)p(y1, y2, y3|u3,w

2
1,w

1
2)

(12)

with

p(u[1;3]) = p(u1)
∏3

k=2 p(uk|uk−1) (13)

p(v1
1,w

[1;2]
1 ) = p(w2

1|w
1
1)p(w1

1|v
1
1)p(v1

1) (14)

p(v2[1; 2],w1
2) = p(w1

2|v
2
2)p(v2

2|v
1
2)p(v1

2) (15)

p(ŷ
[1;2]
1 |y1,u1,w

1
1, v

1
2) =p(ŷ1

1|ŷ
2
1,u1,w

1
1, v

1
2)

·p(ŷ2
1|y1,u1,w

1
1, v

1
2).

(16)

Proof: Outlined in the Appendix.

D. Further problems

Consider the case that the relay nodes and destination are
clustered intoL + 1 disjoint setsRl, l ∈ [1;L + 1], with
RL+1 = {d}. For the sake of simplicity we considered in the
previous discussion that‖Rl‖ = 1 andN = L. Nevertheless,
the extension to‖Rk‖ > 1 andL < N is straightforward but
involves additional considerations. Assume for instance that
each relay node per level is concurrently transmitting in the
way defined above. In this case we have to consider a multiple

access channel between each level set [17, Ch. 14.3], but the
actual protocol design does not change. Another problem to
be considered is the half-duplex constraint which implies that
each relay node is only able to either transmit or receive on
the same time-frequency resource [18], [19]. Among others
[20], [21] present a possible extension if‖Rk‖ > 1 where the
relay nodes alternately transmit. Note, each transmittinggroup
within one Rk can consists of more than one node which
combines the problems of the multiple access channel and the
half-duplex constraint. Obviously, these problems complicate
the analysis but do not affect the basic proposal.

IV. CONCLUSION

In this work we presented a generalization of the mixed
partial decode-and-forward protocol to a multi-level scenario.
This generalization faces two problems: the successive refine-
ment problem and the broadcast channel problem. Known
solutions to these problems are applied to show achievable
rates for the case of two levels. Furthermore, a brief outline
considered additional problems if‖Rk‖ > 1 and if the
half-duplex constraint is applied. Further work will include
the application to wireless models, e. g., the Gaussian relay
channel and fading channels, as well as the application to
certain coding schemes which are more practical to use.
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APPENDIX

This appendix gives an outline for the proof of the achiev-
able rates given in Theorem 1. We describe in the following a
random coding scheme, the encoding as well as the decoding
procedure forN = 2. The proof relies on the definition of
strongly typical setsA∗(n)

ǫ which is for instance given in [17,
Ch. 13.6]. A more detailed proof of the probability of error
in B blocks follows standard arguments which are extensively
used in previous work, e. g., [3], [5].

a) Random Coding: At first we describe the random
codes wherex(i)

n
∼ p(x) denotes that then-length sequences

x(i) are drawn i.i.d. according top(x) =
∏n

j=1 p(xj) where
xj denotes thej-th element of then-length sequencex. The
source generates the followingn-length sequences:

u1(q
1)

n
∼ p(u1), q

1 ∈ [1; 2nR1

1 ],

u2(q
2|q1)

n
∼ p(u2|u1(q

1)), q2 ∈ [1; 2nR2

1 ],

u3(q
3|q[1;2])

n
∼ p(u3|u2(q

2|q1)), q3 ∈ [1; 2nR3

1 ].

Note that the Markov chainU1 ↔ U2 ↔ U3 is again not
a necessary condition but a simplification of the following
derivations. Relay level1 generates the followingn-length
sequences

v1
1(s

1
1)

n
∼ p(v1

1), s
1
1 ∈ [1; 2nR1

1 ],

w1
1(z

1
1 |s

1
1)

n
∼ p(w1

1|v
1
1(s

1
1)),w

1
1 ∈ [1; 2nR̂1

1 ],

w2
1(z

2
1 |s

1
1,w

1
1)

n
∼ p(w2

1|w
1
1(z

1
1 |s

1
1)),w

2
1 ∈ [1; 2nR̂2

1 ].

Furthermore, level2 generates

v1
2(s

1
2)

n
∼ p(v1

2), s
1
2 ∈ [1; 2nR1

2 ],

v2
2(s

2
2|s

1
2)

n
∼ p(v2

2|v
1
2(s

1
2)), s

2
2 ∈ [1; 2nR2

2 ],

w1
2(z

1
2 |s

[1;2]
2 )

n
∼ p(w1

2|v
2
2(s

2
2|s

1
2)),w

1
2 ∈ [1; 2nR̂1

2 ].

To implement the previously described successive refinement
both relay levels need to generate

ŷ1
1(r

1
1|q

1, s1
[1;2], z

1
1)

n
∼ p(ŷ1

1|u1(q
1),w1

1(z
1
1 |s

1
1), v

1
2(s

1
2), )

ŷ1
2(r

1
2|q

[1;2], s1
[1;2], s

2
2, z

1
[1;2])

n
∼ p(ŷ1

2|u2(q
2|q1),w1

1(z
1
1 |s

1
1),

w1
2(z

1
2 |s

[1;2]
2 ), )

ŷ2
1(r

2
1|r

1
1, q

1, s1
[1;2], z

1
1)

n
∼ p(ŷ1

2|ŷ
1
1(r

1
1|q

1, s1
[1;2], z

1
1),

u1(q
1),w1

1(z
1
1 |s

1
1), v

1
2(s

1
2)),

with r1
k ∈ [1; 2n∆1

k ], k ∈ [1; 2], r2
1 ∈ [1; 2n(∆2

1
−∆1

1
)]. The used

pdf’s are obtained by appropriate manipulation of the jointpdf
given in (12).

Remark 2:Note that neither the source transmission de-
pends on the relay transmission nor do the transmission of
relay levell depend on messages sent by levelsl′ > l although
this is possible. We forbear from introducing this additional
coding feature for the sake of simplicity.
Finally we need to define the following random partitions

• Relay level1 defines the setsS1
1 (s1

1), s1
1 ∈ [1; 2nR1

1 ],
by randomly assigning each indexq1 to one of these
sets according to a uniform distribution over the indices
s1
1. Level 2 creates the setsS1

2 (s1
2), s1

2 ∈ [1; 2nR1

2 ], by
randomly and uniformly assigning each of the indices
s1
1 to one of the sets. This set inclusion algorithm was

introduced by Gupta and Kumar in [5].
• Relay level 2 further defines the setsS2

2 (s2
2), s2

2 ∈
[1; 2nR2

2 ], by randomly and uniformly assigning each
index q2 to one of these sets.

• To implement the described successive refinement prob-
lem with side information relay level1 randomly and
uniformly assigns each indexrk

1 , k ∈ [1; 2], to one of
the setsZk

1 (zk
1 ), zk

1 ∈ [1; 2nR̂k
1 ]. In the same way level2

randomly and uniformly assigns each indexr1
2 to one of

the setsZ1
2 (z1

2), z1
2 ∈ [1; 2nR̂1

2 ].

b) Encoding: Let the source transmit in blockb the
messagesu1(q

1
b ), u2(q

2
b |q

1
b ) andu3(q

3
b |q

[1;2]
b ). Further assume

that the decoding in the previous two blocks was error free at
both relay nodes and the destination. Now let

• q1
b−1 ∈ S1

1 (s1
1,b), s1

1,b−1 ∈ S1
2 (s1

2,b) andq2
b−2 ∈ S2

2 (s2
2,b),

• r1
1,b−1 ∈ Z1

1 (z1
1,b), r2

1,b−1 ∈ Z2
1 (z2

1,b) and r1
2,b−2 ∈

Z1
2 (z1

2,b).

We rigorously define in the sequel how these indices are
obtained. Using these indices, level2 transmits the message
w2

1(z
2
1,b|z

1
1,b, s

1
1,b) and the second levelw1

2(z
1
2,b|s

[1;2]
2,b ).

c) Decoding: The decoding atthe first relay level is
done as follows

• Using the channel output in blockb, i. e.,y1(b), the relay
decodesu1(q

1
b ) given w2

1(z
2
1,b|z

1
1,b, s

1
1,b) and v1

2(s
1
2,b)

(obtained by knowings1
1,b−1). Obviously this can be done

almost error free iffn is sufficiently large and

R1
s < I

(

U1; Y1|V
1
2,W

2
1

)

. (17)

• Knowing s1
[1;2],b, z1

1,b, q1
b it selectsr[1;2]

1,b such that

(

y1(b), ŷ
1
1

(

r1
1,b|s

1
2,b, s

1
1,b, z

1
1,b, q

1
b

)

, v1
2

(

s1
2,b

)

,

w1
1(z

1
1,b|s

1
1,b),u1

(

q1
b

)

)

∈ A∗(n)
ǫ

and
(

y1(b), ŷ
2
1

(

r2
1,b|r

1
1,b, s

1
2,b, s

1
1,b, z

1
1,b, q

1
b

)

, v1
2

(

s1
2,b

)

,

ŷ1
1

(

r1
1,b|s

1
2,b, z

2
1,b, q

1
b

)

,w1
1(z

1
1,b|s

1
1,b),u1

(

q1
b

)

)

∈ A∗(n)
ǫ
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which is possible iffn is sufficiently large and

∆1
1 >I

(

Ŷ1
1; Y1|V

1
2,W

1
1,U1

)

(18)

∆2
1 >I

(

Ŷ2
1; Y1|V

1
2,W

1
1,U1

)

. (19)

Relay level 2 does the following decoding steps:
• Using the channel outputy2(b) the node decodes

v1(s
1
1,b), w1

1(z
1
1,b|s

1
1,b) and if o1(2) = 2 also

w2
1(z

2
1,b|z

1
1,b, s

1
1,b) given w1

2,b(z
1
2,b|s

[1;2]
2.b ). This can be

done almost error free iffn is sufficiently large and

R1
1 < I

(

V1
1; Y2|W

1
2

)

, (20)

R̂1
1 < I

(

W1
1; Y2|V

1
1,W

1
2

)

(21)

R̂2
1 < I

(

W2
1; Y2|W

1
[1;2]

)

, if o1(2) = 2. (22)

• Knowing v1
1(s

1
1,b) the relay now decodesu1(q

1
b−1) al-

most error free givenwφ1(2)
1 (z

φ1(2)
1,b−1|z

φ1(2)−1
1,b−1 , s1

1,b−1) and

w1
2(z

1
2,b−1|s

[1;2]
2,b−1) (both are known from the last decoding

step) iff n is sufficiently large and

R1
s < R1

1 + I
(

U1; Y2|W
φ1(2)
1 ,W1

2

)

. (23)

• We know that each̃r1
1,b−1 satisfying

(

y2(b − 1), ŷ1
1

(

r̃1
1,b−1|s

1
2,b−1, s

1
1,b−1, z

1
1,b−1, q

1
b−1

)

,

w1
1(z

1
1,b−1|s

1
1,b−1),w

φ1(2)
1 (z

φ1(2)
1,b−1|z

φ1(2)−1
1,b−1 , s1

1,b−1),

v1
2(s

1
2,b−1),u1(q

1
b−1),w

1
2,b−1(z

1
2,b−1|s

[1;2]
2,b−1)

)

∈ A∗(n)
ǫ

(24)

could be the correct index. Therefore, we define the set

L2,r1

1,b−1

(y2(b − 1)) =
{

r̃1
1,b−1 : r̃1

1,b−1satisfies (24)
}

and select one index usingz1
1,b iff

∃r̂1
1,b−1 : r̂1

1,b−1 = Z1
1 (z1

1,b) ∩ L2,r1

1,b−1

(y2(b − 1)) .

This decoding step is successful, i. e.,r̂1
1,b−1 = r1

1,b−1,
iff n is sufficiently large and

∆1
1 < R̂1

1+

{

I(Y2W
1
2; Ŷ

1
1|W

1
1V

1
2U1) if φ1(2) = 1,

I(Y2W
1
2W

2
1; Ŷ

1
1|W

1
1V

1
2U1) otherwise.

(25)
If o1(2) = 2, the relay can decode in a similar wayr2

1,b−1

iff n is sufficiently large and

∆2
1 < I(Y2W

1
2W

2
1; Ŷ

2
1|W

1
1V

1
2U1) + R̂1

1 + R̂2
1. (26)

• Now the relay uses this quantization to decodeq2
b−1 iff

n is sufficiently large and

R2
s < I

(

U2; Y2, Ŷ
φ1(2)
1 |W1

[1;2],W
φ1(2)
1 ,V1

2,U1

)

. (27)

• In the same way as described for (18)-(19) the second
level finds the indexr1

2,b−1 for quantizationŷ1
2 iff n is

sufficiently large and

∆1
2 > I

(

Y2; Ŷ
1
2|W

1
[1;2],U2

)

. (28)

Finally, the destination does the following decoding steps

• At first the destination decodesv1
2(s

1
2,b), v2

2(s
2
2,b|s

1
2,b) and

w1
2(z

1
2,b|s

[1;2]
2,b ) iff n is sufficiently large and

R1
2 < I(V1

2; Y3), (29)

R2
2 < I(V2

2; Y3|V
1
2), (30)

R̂1
2 < I

(

W1
2; Y3|V

2
2

)

. (31)

Knowing s1
2,b the destination then decodesv1

1(s
1
1,b−1) iff

n is sufficiently large and

R1
1 < I

(

V1
1; Y3|W

1
2

)

+ R1
2. (32)

• Usings1
1,b−1 and the already in blockb−2 decoded relay

messages it can decodeu1(q
1
b−2) iff n is sufficiently large

and

R1
s < I

(

U1; Y3|W
φ1(3)
1 ,W1

2

)

+ R1
1. (33)

• In the same way as shown in the description of (25)
and (26) the destination at first determinesz1

1,b−1 and
if o1(2) = d alsoz2

1,b−1 iff n is sufficiently large and

R̂1
1 < I

(

W1
1; Y3|V

1
1,W

1
2

)

(34)

R̂2
1 < I

(

W2
1; Y2|W

1
[1;2]

)

, if o1(2) = d. (35)

Using these indices the destination determines the indices
rk
1,b−2, k ∈ [1;φ1(d)], iff n is sufficiently large and

∆1
1 < R̂1

1+

{

I(Y3W
1
2; Ŷ

1
1|W

1
1V

1
2U1) if φ1(d) = 1,

I(Y3W
1
2W

2
1; Ŷ

1
1|W

1
1V

1
2U1) otherwise,

(36)
and if o1(2) = d

∆2
1 < I(Y3W

1
2W

2
1; Ŷ

2
1|W

1
1V

1
2U1) + R̂1

1 + R̂2
1. (37)

• Now the destination uses this quantization and the index
s2
2,b to decodeu2(q

2
b−2|q

1
b−2) which is almost error free

iff n is sufficiently large and

R2
s < I

(

U2; Y3, Ŷ
φ1(3)
1 |W1

[1;2],W
φ1(3)
1 ,V1

2,U1

)

+ R2
2.

(38)
• As shown in the description of (25) and (26) the destina-

tion determines the indexr1
2,b−2 almost error free iffn

is sufficiently large and

∆1
2 < R̂1

2 + I(Y3, Ŷ
1
1; Ŷ

1
2|V

1
2,W

1
[1;2],U[1;2]) (39)

if φ1(3) = 1 and otherwise

∆1
2 < R̂1

2 + I(Y3, Ŷ
2
1,W

2
1; Ŷ

1
2|V

1
2,W

1
[1;2],U[1;2]). (40)

• Finally the destination uses the quantizations of both relay
levels to decodeu3

(

q3
b−2|q

[1;2]
b−2

)

which is almost error
free iff n is sufficiently large and

R3
s < I

(

U3; Y3, Ŷ
φ1(3)
1 , Ŷ1

2|U[1;2],W
1
[1;2],W

φ1(3)
1 ,V1

2

)

.

(41)

Using standard manipulations it is easy to show that (17)-(41)
determine the achievable rates stated in Theorem 1.
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