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Abstract— In this paper, the tail-biting version of the low-
density parity-check convolutional codes (LDPCCCs) is intro-
duced and investigated. The definition of the tail-biting LDPCCCs
(TB-LDPCCCs) is given through their parity-check matrices and
the basic ideas behind the architectures of the encoders and
decoders for these codes are also presented. In addition, the
asymptotical lower bound for the minimum distance of these
codes and simulation results are shown.

I. INTRODUCTION

In the last years, the low-density parity-check (LDPC) codes
invented by Gallager [1] and the turbo codes discovered
by Berrou et al. [2] attracted great attention of the coding
community because of their Shannon capacity approaching
performance and low-complexity decoding. This paper is
devoted to the study of the tail-biting version of the LDPC
convolutional codes (LDPCCCs) introduced in [3]1.

LDPCCCs have some advantages in comparison with LDPC
block codes, specially for transmitting streaming data [5]. An
important feature of LDPCCCs is that the same encoder can be
used to obtain codes sequences of varying lengths with quite
good performance by choosing different termination lengths.
However, the introduction of a zero-tail for termination results
in the so-called rate loss, which is specially noticeable for
small frame lengths. The introduction of tail-biting allows to
avoid this loss.

In the following section, we define the transposed parity-
check matrix of a tail-biting LDPCCC (TB-LDPCCC) as the
wrapped syndrome former of the mother LDPCCC. Then, in
section III, we describe the encoder and the concept for its
implementation. Section IV is devoted to the description of the
circular pipeline decoder for TB-LDPCCCs. In section V, we
study the asymptotical properties of the minimal distance of
TB-LDPCCCs as a function of the syndrome former memory
of the mother LDPCCC and blocklength. Simulation results
for regular (3, 6) TB-LDPCCCs of different lengths are pre-
sented in section VI and also compared to random generated
LDPC block codes (LDPCBCs). Finally, section VII concludes
the paper.

II. TAIL-BITING LDPC CONVOLUTIONAL CODES

In order to simplify the notations, we will only give the
description of rate R = 1/2 codes. Generalizations to other
rates is straightforward. Let

1LDPCCCs were first described by Tanner in a patent application [4].

u[0,t] = (u0, u1, · · · , ut), (1)

where ui ∈ GF (2), be the information sequence that enters
the encoder. The encoded sequence is given by

v[0,t] = (v0,v1, · · · ,vt), (2)

where vi = (v(0)
i , v

(1)
i ) and v

(·)
i ∈ GF (2). For the case of

systematic encoders, we have v
(0)
i = ui.

Now, we recall the definition of an LDPCCC. A time-
varying LDPCCC is defined as the set of all sequences v[0,∞]

satisfying the equation v[0,∞]HT
[0,∞] = 0, where

HT
[0,∞] =

⎛
⎜⎜⎜⎜⎝

HT
0(0) · · · HT

ms
(ms) 0

. . .
. . .

0 HT
0(t) · · · HT

ms
(t + ms)

. . .
. . .

⎞
⎟⎟⎟⎟⎠

(3)
is a semi-infinite transposed parity-check matrix, called syn-
drome former. For a rate R = 1/2 code, the elements of
HT

[0,∞] are submatrices of dimension 2 × 1 given by

HT
i (t) =

(
h

(0)
i (t)

h
(1)
i (t)

)
, i = 0, · · · , ms, (4)

where h
(k)
0 (t) = 1, k = 0, 1, and, at least for one time-instant

t, we have HT
ms

(t) �= 0. Moreover, the syndrome former
defining a regular (J, K) LDPCCC has exactly J ones in
each row and K ones in each column, starting from the m s-
th column. The value ms is the syndrome former memory.
For practical applications, periodic syndrome former matrices
with period T are used, i.e., HT

i (t) = HT
i (t + T ). In [3], the

methods for constructing periodical LDPCCCs based on the
unwrapping procedure are described.

The code sequences ṽ[0,N−1] of the tail-biting LDPCCC
satisfy the equality

ṽ[0,N−1]H̃T
[0,N−1] = 0. (5)

Here, the transposed parity-check matrix H̃T
[0,N−1] of a rate

R = 1/2 TB-LDPCCC with blocklength 2N is obtained by
wrapping the last ms columns of submatrices of the syndrome
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H̃T
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0(0) HT
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.
.
.

.
.
.

.
.
.
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HT
ms−1(N) HT
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(N + 1) 0

.

.

.

.

.

. 0 HT
0(N − 2) HT
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1(N) HT
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0(N − 1)

⎞
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(6)

[
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⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7)

former in (3) after N time instants. Thus, H̃T
[0,N−1] can be

written as (6).

III. ENCODING OF TAIL-BITING LDPCCCS

The rows of the parity-check matrix H̃T
[0,N−1] can be re-

ordered to facilitate the encoding procedure. For this purpose,
we separate the even rows of H̃T

[0,N−1] in [H̃(0)
[0,N−1]]

T and the

odd rows in [H̃(1)
[0,N−1]]

T, where [H̃(k)
[0,N−1]]

T, for k = 0, 1, is
given by (7).

Analogously, if we reorder the elements of ṽ [0,N−1] into

two subvectors ṽ(k)
[0,N−1] = (v(k)

0 , · · · , v
(k)
N−1), k = 0, 1; then

we can rewrite equation (5) as

ṽ(0)
[0,N−1]

[
H̃(0)

[0,N−1]

]T
+ ṽ(1)

[0,N−1]

[
H̃(1)

[0,N−1]

]T
= 0 (8)

Furthermore, if the matrix [H̃(1)
[0,N−1]]

T has full rank, it has
an N × N inverse, which we call G[0,N−1]. Then, we can
obtain the following encoding equation for systematic codes

ṽ(1)
[0,N−1] = u[0,N−1]

[
H̃(0)

[0,N−1]

]T
G[0,N−1], (9)

where u[0,N−1] = (u0, · · · , uN−1) = ṽ(0)
[0,N−1] is the infor-

mation sequence. Note that the N × N matrix G̃[0,N−1] =
[H̃(0)

[0,N−1]]
TG[0,N−1] can be calculated in advance and stored.

In this case, the encoder can be implemented using a linear
matrix multiplication circuitry with operations defined on
GF (2) with complexity of the order O(N 2).

IV. DECODING OF TAIL-BITING LDPCCCS

The decoding of TB-LDPCCCs can be performed using
the pipelined version [3] of the belief propagation decoding
of LDPC codes [1]. Particularly, it is convenient to use a
pipeline decoder with a circular topology [6] that reflects the
wrap-around in the parity-check matrix in (6). The circular

pipeline decoder will consist of 1 ≤ IP ≤ N/(ms+1) parallel
processors Di (Fig. 1).

IN

OUT

1D

2D

PI
D

Memory 
Section

Fig. 1. Circular pipeline decoder.

The operation of the circular pipeline decoder is as follows.
The code sequence of a TB-LDPCCC corresponding to N time
instants enters the decoder, so that its memory is completely
written. Each parallel processor Di is attributed a memory
section (Fig. 1), which is large enough to avoid the memory
access collisions between the processors and, thus, enables
their parallel operation. Considering the graph representation
of the TB-LDPCCC, we can easily note that the size of the
memory sections should be at least ms + 1 time instants to
permit simultaneous operation of all processors. Then, the
processors Di hop over the memory addresses in steps corre-
sponding to the amount of data transmitted in one time instant
of the TB-LDPCCC. After each processor has completed IR

rounds over the complete memory, a number I = IR · IP
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z
(k)
t (i, l) = z

(k)
t (0) +

∑
l′∈L(t,k)\l

log

1 +

( ∏
t′∈N (l′,k)\t

tanh(z(k)
t′ (i − 1, l′)/2)

)
·
( ∏

t′∈N (l′,k̄)

tanh(z
¯(k)

t′ (i − 1, l′)/2)

)

1 −
( ∏

t′∈N (l′,k)\t

tanh(z(k)
t′ (i − 1, l′)/2)

)
·
( ∏

t′∈N (l′,k̄)

tanh(z
¯(k)

t′ (i − 1, l′)/2)

) . (11)

of decoding iterations has been performed. Clearly, a circular
pipeline decoder with I ′

P = N ′/(ms + 1) parallel processors
can also decode TB-LDPCCCs with blocklengths smaller than
N ′ time instants. In this case, the processor that is performing
the operations at the borders of the active memory region must
neglect the inactive memory region in between by perform-
ing a wrap-around in the address generation. Moreover, the
processors that are located in the inactive memory region can
be turned off.

Now, we consider the decoding from the belief propagation
viewpoint. We suppose that the rows of the matrix [H̃(k)

[0,N−1]]
T

are numerated by the pair (t, k), where t = 0, · · · , N − 1 and
k = 0, 1. We also numerate the columns of [H̃(k)

[0,N−1]]
T by l,

where l = 0, · · · , N − 1.
Let r[0,N−1] = (r0, · · · , rN−1), where rt = (r(0)

t , r
(1)
t ),

be the received sequence corresponding to the transmitted
sequence ṽ[0,N−1] = (v0, · · · ,vN−1). The decoder uses the
received symbols of r[0,N−1] to calculate the initial log-

likelihood ratios (LLRs) z
(k)
t (0), called intrinsic information,

for all symbols of the sequence ṽ[0,N−1]. This is expressed
as:

z
(k)
t (0) =

log
Pr(v(k)

t = 0|r(k)
t )

Pr(v(k)
t = 1|r(k)

t )
, t = 0, 1, · · · , N − 1, k = 0, 1.

(10)

Let L(t, k) be the set of column numbers of [H̃(k)
[0,N−1]]

T

having a one in the t-th row of [H̃(k)
[0,N−1]]

T. Correspondingly,
let N (l, k) be the set of row numbers having a one in the
l-th column of [H̃(k)

[0,N−1]]
T. As we can note, these two sets

represent the graph connectivity of the code.
Based on the intrinsic information, the decoder performs

I iterations. In the i-th iteration, J LLRs z
(k)
t (i, l), where

t = 0, · · · , N − 1; k = 0, 1 and l ∈ L(t, k) are updated for
each one of the 2N symbols. It is worth to mention that the
number of columns of the matrix [H̃(k)

[0,N−1]]
T having a one in

the t-th row is equal to J .
Hence, the LLR z

(k)
t (i, j) of the i-th iteration is connected

with the LLRs z
(k′)
t′ (i−1, j′) of the previous iteration accord-

ing to the expression given by (11), where k̄ = 1 for k = 0
and k̄ = 0 for k = 1.

The first term in (11) represents the intrisic values from
(10), which are derived from the received symbols r

(k)
t . The

second term in (11) represents the extrinsic information that

the parity-check equation corresponding to the columns of (6)
deliver to the symbol v

(k)
t on the i-th iteration. In the last I-

th iteration, all parity-check sets participate on the calculation
of the final LLR, which is used to compute the hard-decision
estimate given by

v̂
(k)
t =

{
1, if z

(k)
t < 0

0, otherwise
. (12)

V. DISTANCE BOUNDS FOR TAIL-BITING LDPCCCS

Tail-biting convolutional codes have dual nature. Namely,
they have simultaneously properties of convolutional and block
codes. Particularly, the minimum distance of these codes,
which is a function of the code blocklength, depends on the
free distance of the mother convolutional code.

To lowerbound the minimum distance of a tail-biting
LDPCCC, we consider the same random ensemble of the
time-varying LDPCCCs as in [7], namely, an ensemble
CLDPCCC(J, K, M) of (J, K) LDPCCCs with syndrome for-
mers composed of M × M block permutation matrices. The
main result of [7] can be formulated as the following theorem.

Theorem 1: In the ensemble CLDPCCC(3, 6, M), there exists
a convolutional code with free distance d free lowerbounded by

dfree ≥ αLDPCCC(3, 6) · ν + o(ν), (13)

where ν = 6M is the constraint length of the code, and the
coefficient αLDPCCC(3, 6) is equal to 0.083.

Note that the coefficient αLDPCCC(3, 6) is about 4.7 times
less than the coefficient αC = 0.39 of Costello’s bound for the
free distance of conventional convolutional codes.

The minimum distance dmin of (J, K) LDPC block codes
is lower-bounded by Gallager’s bound [1]:

dmin ≥ αG(J, K) · μ + o(μ), (14)

where μ is the blocklength and the coefficient αG(J, K) is
equal to 0.023 for J = 3 and K = 6.

We have considered an ensemble C̃LDPCCC(3, 6, M, N) of
tail-biting LDPCCCs constructed by unwrapping the last ms

columns of submatrices of the syndrome former of a code
from ensemble CLDPCCC(3, 6, M) after N time instants.

Theorem 2: In the ensemble C̃LDPCCC(3, 6, M, N), there ex-
ists a tail-biting convolutional code with minimum distance
lower-bounded by

dmin ≥ min
{

αG(J, K) · μ + o(μ), αLDPCCC(3, 6) · ν + o(ν)
}

,

(15)
where μ = 2N is the blocklength, ν = 6M is the constraint
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Fig. 2. BER performance of the tail-biting LDPCCCs obtained from convolutional codes with syndrome-former memories ms = 257 and ms = 513. The
BER curves of the original convolutional codes (thick lines) are also shown for comparison purposes.

length of the mother LDPCCC, αG(J, K) = 0.023 and
αLDPCCC(3, 6) = 0.083.

From (15), it follows that, from the minimum distance
viewpoint, it is reasonable to choose blocklengths for tail-
biting LDPCCCs such that

2N = μ ≥ αLDPCCC(3, 6)
αG(J, K)

· ν ≈ 3.6ν. (16)

VI. SIMULATION RESULTS

The performance of rate R = 1/2 regular (3, 6) TB-
LDPCCCs is considered in this section. For this purpose,
we constructed several TB-LDPCCCs with blocklengths μ =
2N from different convolutional codes with syndrome-former
memories ms. The construction of the mother LDPCCCs
is based on the unwrapping procedure presented in [3]. To
construct the TB-LDPCCCs, we use the wrapping of the last
ms columns of submatrices that was shown in section II.
Additionally, the full-rank conditions mentioned in section III
were satisfied to enable the encoding procedure expressed by
(9).

All simulations were performed in an AWGN channel with
BPSK modulation and the maximum number of decoding
iterations was chosen to be 50. Moreover, for each simulation
point, at least 5000 frames were decoded and at least 100
frame errors have occurred.

In Fig. 2, we can observe the BER performance of TB-
LDPCCCs with different blocklengths μ that were originated
from mother codes with syndrome-former memories m s =
257 and ms = 513. In the considered interval of blocklengths,
the correction capabilities of the codes are improved by
increasing the blocklengths μ. Additionally, we can observe
that, at least in the low SNR regime, the performance of the
codes is mainly determined by the blocklength μ. For instance,

the codes with blocklengths μ = 4096 and μ = 5120 and
different memories ms have almost the same performance.

Another important comment that we can make based on Fig.
2 is about the behavior of the TB-LDPCCCs in comparison
to their mother LDPCCCs (thick curves in Fig. 2). The
LDPCCCs were decoded using pipeline decoders [3] in a
streaming fashion. The pipeline decoders consist of 50 equal
processors, which correspond to the 50 decoding iterations.
As we can observe, the mother LDPCCCs have similar per-
formances to their tail-biting codes with blocklengths given
by μ ≈ 12(ms + 1), which are the constraint lengths of the
LDPCCCs times 6.

The figures 3, 4 and 5 show a comparison between TB-
LDPCCCs and random LDPC block codes (LDPCBCs). All
LDPCBCs used for comparison have the degrees (3, 6), rate
R = 1/2 and they are free of cycles of length 4. They were
decoded using a maximum of 50 decoding iterations in the
same conditions as the TB-LDPCCCs. As we can observe in
the figures, TB-LDPCCCs and random LDPCBCs have similar
performances. In some cases, the TB-LDPCCCs are slightly
better. For instance, the random LDPCBC with blocklength
μ = 2048 in Fig. 3 shows an error-floor while the TB-
LDPCCCs are still in their waterfall region. In Fig. 5, the TB-
LDPCCCC with memory ms = 513 has a better performance
then the random LDPCBC with the same blocklength.

Let us now consider the implementation complexity of
the decoder for TB-LDPCCCs. As we know, the hardware
complexity of LDPC codes is mainly determined by the graph
connectivity necessary for the message passing. Recalling the
section IV, we see that the circular pipeline decoder consists of
IP identical processors Di, where each of them have a graph
connectivity in the order of ms + 1 . Furthermore, the design
of the decoders for TB-LDPCCCs is very simplified because
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Fig. 3. BER performances of tail-biting LDPCCCs and random LDPC block
codes for the blocklengths µ = 2048 and µ = 2560.
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Fig. 4. BER performances of tail-biting LDPCCCs and random LDPC block
codes for the blocklengths µ = 4096 and µ = 5120.

all the parallel processors are identical. These facts can be
summarized to the point that, from the viewpoint of hardware
implementation, an LDPCBC with the same complexity as the
TB-LDPCCC would have a blocklength of μ = 2(ms + 1).
Thus, the random LDPCBCs of the simulations are about 5,
10 or even 20 times more complex than the TB-LDPCCCs.

VII. CONCLUSION

In this paper, we presented and analyzed a new class of iter-
atively decodable codes called tail-biting LDPC convolutional
codes. We showed how to obtain these codes from a mother
LDPC convolutional code by wrapping the last few columns
of its syndrome former. The principles behind the encoder
and decoder algorithms/architectures for these codes were also
presented. In addition, distance bounds for these new codes
were proposed and we could recognize the dual nature of these
codes. Namely, their minimum distance depends on the free

1 1.25 1.5 1.75
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LDPCBC μ = 10240
TB−LDPCCC m

s
 = 257 μ = 10240

TB−LDPCCC m
s
 = 513 μ = 10240

Fig. 5. BER performances of tail-biting LDPCCCs and random LDPC block
codes for the blocklength µ = 10240.

distance dfree of the mother LDPC convolutional codes and on
the blocklength. Finally, we analyze the BER performance of
these codes by means of simulations, where we could realize
the performance vs. complexity advantages of the tail-biting
LDPC convolutional codes in comparison to the conventional
random LDPC block codes.

Our further research on this topic includes the study of
irregular TB-LDPCCCs, as well as, efficient high-speed VLSI
designs of the encoders and decoders for these codes.
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