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Abstract—In the design of energy-efficient communication sys-
tems with very high bandwidths, the analog-to-digital converter
(ADC) plays a crucial role, since its energy consumption grows
exponentially with the number of quantization bits. However,
high resolution in time domain is less difficult to achieve than
high resolution in amplitude domain. This motivates for the
design of receivers with 1-bit quantization and oversampling w.r.t.
Nyquist rate. On the downside, standard receiver synchronization
algorithms cannot be applied, since 1-bit quantization is a highly
non-linear function.

To understand the channel parameter estimation performance
of such a receiver, the Fisher information (FI) is a helpful mea-
sure. Since the closed form evaluation of the FI is not possible
for correlated Gaussian noise, we give a lower bound that is an
extension of a lower bound by Stein et al. to complex valued
channel outputs. If the noise is white, the lower bound is tight.
Furthermore, we apply the lower bound for the evaluation of the
performance of carrier phase estimation of a QPSK based com-
munication system. We show that for any SNR level oversampling
reduces the performance loss due to 1-bit quantization. In the
mid and low SNR regime, oversampling reduces the performance
loss beyond the loss of 2

π
encountered in case of 1-bit quantization

at Nyquist sampling in the low SNR regime.

I. INTRODUCTION

With the increasing demand for faster communication sys-
tems, soon data rates of multiple gigabit per second are re-
quired. It has recently been understood that analog-to-digital
conversion forms a bottleneck at the receiver w.r.t. the power
consumption. In particular in wireless short range scenarios,
e.g., communication between computer boards [1], [2] an
analog-to-digital converter (ADC) with multiple gigasamples
per second has a major impact on the overall power consump-
tion of the wireless link. An annually compiled survey on
recent advances in ADC design shows that power limited high
sampling rates come at the price of coarse quantization [3].
Having this in mind, using an ADC with 1-bit quantization
can be beneficial as the low resolution can be compensated by
higher sampling rates. It is expected that 1-bit quantization and
oversampling is still more energy-efficient than conventional
high resolution sampling at Nyquist rate, since neither an
automatic gain control, nor linear amplification is required.

Numerical studies have found that sequence design and
faster-than-Nyquist (FTN) signaling is beneficial in terms of
the achievable rate [4], [5]. Moreover, bounds on the achiev-
able rate of the continuous time (i.e., infinite oversampling)
additive white Gaussian noise (AWGN) channel with 1-bit
output quantization and strict bandlimitation were derived in

[6]. These analytical results confirmed the aforementioned nu-
merical studies.

In [7] the joint synchronization of phase and frequency in
a QPSK and Nyquist rate based communication system with
coarse quantization was considered. By passing n linear com-
binations of the in-phase and quadrature components through
1-bit ADCs, phase quantization into 2n bins is possible. On
the downside, this method increases the energy consumption
of the analog-to-digital conversion by factor n

2 .
However, synchronization under 1-bit quantization and over-

sampling has not been considered yet. In order to investigate
the fundamental limits of the synchronization, one has to ana-
lyze the maximum estimation accuracy of parameters (e.g. tim-
ing, phase and frequency offset) of the complex channel dis-
tribution, which is determined by the Fisher Information (FI)
and the Cramér-Rao lower bound (CRLB) [8]. Unfortunately,
oversampling w.r.t. Nyquist rate results in noise correlation
and it is a mathematically open problem to find an analytical
description for the likelihood function of system models with
colored Gaussian noise and 1-bit quantization, since there is no
analytical description of the orthant probabilities [9]. For real
valued signals, Stein et al. derived a lower bound on the FI that
requires only the first and second order moments [10]. How-
ever, this lower bound is not directly applicable to complex
valued signals as they are encountered in the baseband repre-
sentation of communication systems. We extend this bound to
complex valued signals and and show that it is tight in the case
of white noise. Furthermore, we apply the lower bound to the
problem of carrier phase estimation. While it is known that
channel parameter estimation at a receiver with 1-bit quanti-
zation and sampling at Nyquist rate shows a performance loss
of more than 2

π compared to the unquantized case [11], [12],
we show that oversampling can reduce this performance loss.

II. FISHER INFORMATION LOWER BOUND

Consider the stochastic multivariate system output r ∈ RK
with the likelihood function p(r|θ) that depends on the deter-
ministic but unknown parameter vector θ ∈ RL. The FI matrix
[8, Chapter 3] of the system is defined as

[Fr]ij = Er|θ

[(
∂ ln p(r|θ)

∂θi

)(
∂ ln p(r|θ)

∂θj

)]
, (1)

with θi and θj being elements of θ. For any unbiased estimator
θ̂(r), the variance is lower bounded by the CRLB

Var
[
θ̂i(r)

]
≥
[
F−1r

]
ii
. (2)
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For cases where an analytical description of p(r|θ) is not
available or (1) is too difficult to compute, Stein et al. derived
a lower bound that requires only the first and second order
moments [10]

µr = E [r] (3)

Rr = E
[
rrT
]
− µrµ

T
r , (4)

which can be computed element-wise. The FI lower bound is
given by

Fr �
(
∂µr

∂θ

)T
R−1r

(
∂µr

∂θ

)
= F̃r (5)

where Fr � F̃r denotes that Fr−F̃r is positive semi-definite.
Note that (5) is the exact FI of an unquantized Gaussian system
with equal first and second order moment.

Now consider a complex random vector y ∈ CK with the
likelihood function p(y|θ). The FI matrix and the CRLB are
defined as in (1) and (2), respectively. However, the FI lower
bound (5) is only valid for real valued random vectors. Thus,
we extend the lower bound to complex valued systems by
utilizing the FI chain rule [13, Lemma 1]

Fy = Fu + Fv|u, (6)

with y = u+ jv and[
Fv|u

]
ij
= Eu,v|θ

[(
∂ ln p(v|u,θ)

∂θi

)(
∂ ln p(v|u,θ)

∂θj

)]
.

(7)
We now have decomposed the FI into two parts that only
depend on real random vectors and, thus, we can apply the
lower bound (5), such that

Fy � F̃u + F̃v|u = F̃y . (8)

If u and v are independent, (6) and (8) reduce to

Fy = Fu + Fv � F̃u + F̃v = F̃y . (9)

III. CHANNEL PARAMETER ESTIMATION WITH 1-BIT
QUANTIZATION AND COLORED GAUSSIAN NOISE

We assume a complex-valued observation vector

y = csign (s(θ) + η)

= sign (Re {s(θ) + η}) + j · sign (Im {s(θ) + η})
= u+ jv,

(10)

with the signum function

sign (x) =

{
1 x > 0

−1 x ≤ 0
(11)

that is applied elementwise. The vector s(θ) ∈ CK contains
the information on the transmitted data altered by the chan-
nel that is characterized by the deterministic but unknown
parameter vector θ ∈ RL. The vector η ∼ CN (0,Rη) is
a circularly-symmetric complex Gaussian random vector with
independent real and imaginary part. Furthermore, s(θ) and η
are independent.

Unfortunately, a compact analytical description of the likeli-
hood function p(y|s(θ)) is only available in the case of white
noise, i.e., Rη = σ2I, where I is the identity matrix. It is a
mathematically open problem to find an analytical description
for the likelihood function of system models with colored
Gaussian noise and 1-bit quantization, since there is no an-
alytical description of the orthant probabilities [9]. However,
we can apply (9) to lower bound the FI.

Since the lower-bounding technique is identical for both,
the real and the imaginary part, we present only the derivation
of F̃u. The mean value of u is given by

[µu]k = p (uk = +1|s(θ))− p (uk = −1|s(θ))

= 1− 2Q

(
Re {sk(θ)}√
[Rη]kk /2

)
,

(12)

where Q(·) denotes the Q-function

Q(x) =
1√
2π

∫ ∞
x

exp

(
−u

2

2

)
du . (13)

The derivative of (12) is given by

∂ [µu]k
∂θi

=
2 exp

{
−Re{sk(θ)}2

[Rη ]kk

}
∂
∂θi

Re {sk(θ)}√
π [Rη]kk

. (14)

The diagonal elements of the covariance matrix are given by

[Ru]kk = 1− [µu]
2
k , (15)

while the off-diagonal elements are calculated as

[Ru]kn = 2 [p (zk > 0, zn > 0) + p (zk ≤ 0, zn ≤ 0)]

− 1− [µu]k [µu]n
(16)

where [zk, zn]
T is a bi-variate Gaussian random vector[

zk
zn

]
∼ N

([
Re {sk(θ)}
Re {sn(θ)}

]
,
1

2

[
[Rη]kk [Rη]kn
[Rη]nk [Rη]nn

])
. (17)

Thus, (16) can only be obtained numerically. The lower bound
for the imaginary part of y is derived in the same manner.

IV. CHANNEL PARAMETER ESTIMATION WITH 1-BIT
QUANTIZATION AND WHITE GAUSSIAN NOISE

Consider the system model (10), but now the noise is white,
i.e., Rη = σ2I. In this case, it is possible to describe the
likelihood function in an analytical form and, thus, it is pos-
sible to derive the FI. Since the elements yk and yn of y are
independent conditioned on s (θ) if k 6= n, the likelihood
function is given by

p (y|s (θ)) =
K∏
k=1

p (yk|sk (θ))

=

K∏
k=1

p (uk|sk (θ)) p (vk|sk (θ)) ,
(18)

with

p (uk = +1|sk (θ)) = Q

(
−Re {sk(θ)}

σ/
√
2

)
(19)
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and
p (uk = −1|sk (θ)) = Q

(
Re {sk(θ)}
σ/
√
2

)
. (20)

The probability p (vk|sk (θ)) is defined in the same manner,
such that

p(y|s(θ))=
K∏
k=1

Q

(
−uk

Re{sk(θ)}
σ/
√
2

)
Q

(
−vk

Im{sk(θ)}
σ/
√
2

)
.

(21)
To derive the FI, we apply the FI chain rule, such that us-
ing the independency of u = [u1, u2, · · · , uK ] and v =
[v1, v2, · · · , vK ] results in

Fy =

K∑
k=1

(Fuk + Fvk) . (22)

We again restrict the presentation to the FI of the real part,
since the derivation for the imaginary part is analogous. With

d

dx
lnQ (f(x)) = −exp

{
−f2(x)/2

}
d
dxf(x)√

2πQ (f(x))
(23)

the FI of uk is given by

[Fuk ]ij =
1

πσ2

×Euk|sk(θ)

exp
{
−Re{sk(θ)}2

σ2/2

}
∂
∂θi

Re{sk(θ)} ∂∂θjRe{sk(θ)}

Q
(
−uk Re{sk(θ)}

σ/
√
2

)2
.

(24)

We utilize (19) and (20) to evaluate the expected value, such
that

[Fuk ]ij =
1

πσ2

×
exp

{
−Re{sk(θ)}2

σ2/2

}
∂
∂θi

Re {sk(θ)} ∂
∂θj

Re {sk(θ)}

Q
(

Re{sk(θ)}
σ/
√
2

)
Q
(
−Re{sk(θ)}

σ/
√
2

)
(25)

and finally

[Fy]ij=
1

πσ2

×
K∑
k=1

exp
{
−Re{sk(θ)}2

σ2/2

}
∂
∂θi

Re{sk(θ)} ∂
∂θj

Re{sk(θ)}

Q
(

Re{sk(θ)}
σ/
√
2

)
Q
(
−Re{sk(θ)}

σ/
√
2

)
+

exp
{
− Im{sk(θ)}2

σ2/2

}
∂
∂θi

Im{sk(θ)} ∂
∂θj

Im{sk(θ)}

Q
(

Im{sk(θ)}
σ/
√
2

)
Q
(
− Im{sk(θ)}

σ/
√
2

)
.

(26)

Let us now derive the FI lower bound for the case of white
noise. As the off-diagonal elements of Rη are zero, the off-
diagonal elements of Ru and Rv are also zero. Hence, (5)
reduces to [

F̃u

]
ij
=

K∑
k=1

∂ [µu]k
∂θi

∂ [µu]k
∂θj

1

[Ru]kk
, (27)

with

[Ru]kk = 1− [µu]
2
k

= 1−
(
1− 2Q

(
Re {sk(θ)}
σ/
√
2

))2

= 4Q

(
Re {sk(θ)}
σ/
√
2

)
Q

(
−Re {sk(θ)}

σ/
√
2

) (28)

and ∂[µu]k
∂θi

given in (14) such that[
F̃u

]
ij
=

1

πσ2

×
K∑
k=1

exp
{
−Re{sk(θ)}2

σ2/2

}
∂
∂θi

Re {sk(θ)} ∂
∂θj

Re {sk(θ)}

Q
(

Re{sk(θ)}
σ/
√
2

)
Q
(
−Re{sk(θ)}

σ/
√
2

) .

(29)

Since F̃v is obtained in the same manner, we see that for white
noise the FI lower bound equals the actual FI of the system
in (26), i.e., Fy = F̃y. This serves as a motivation to use the
lower bound in the case of colored noise, where a closed form
solution of the exact FI is not available.

V. APPLICATION: CARRIER PHASE ESTIMATION

We now apply the FI lower bound to the problem of es-
timating the carrier phase offset in a QPSK signal with M
transmit symbols under 1-bit quantization and oversampling.
We consider the complex valued receive signal

r(t) =

M∑
m=1

amg(t−mT )ejφ + η(t) (30)

with deterministic but unknown phase rotation φ and ideal
rectangular transmit and receive filters with single sided band-
width W = 1

2T . That means that g(t) is a sinc pulse and the
power spectral density (PSD) of the Gaussian noise η(t) is
given by

Sη(f) =
N0

2
rect

(
f

2W

)
(31)

where rect (·) is the rectangular function. Thus, according to
the Wiener-Khinchin theorem η(t) has the auto-correlation
function

rη(τ) =WN0sinc (2Wτ) . (32)

Furthermore, we assume the QPSK constellation am ∈{
ej

π
4 , ej

3
4π, ej

5
4π, ej

7
4π
}

. The analog receive signal r(t) is
sampled with an oversampling factor Mos such that after 1-bit
quantization we get

yk = csign

(
M∑
m=1

amg

(
k
T

Mos
−mT

)
ejφ + η

(
k
T

Mos

))
(33)

and the noise covariance matrix of dimension MMos×MMos
is given by

[Rη]kn =WN0sinc

(
2W

T

Mos
|n− k|

)
= σ2sinc

(
1

Mos
|n− k|

)
.

(34)
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Fig. 1. FI ratio χ(φ) for M = 1 and Mos = 1

One observes that only for Mos = 1, i.e., sampling at Nyquist
rate, the noise is white with Rη = σ2I.

As a benchmark for the receiver based on 1-bit quantization
and oversampling, we use a receiver based on unquantized
Nyquist sampling, i.e., the receiver has access to the signal

zk =

M∑
m=1

amg (kT −mT ) ejφ + η(kT ). (35)

The FI of the phase φ of this signal model is known to be
[14, p. 337]

Fz(φ) = 2M
Es
σ2

(36)

where Es is the symbol energy and, thus, Es/σ2 is the SNR.
The performance gap between the unquantized receiver (35)
and the 1-bit receiver (33) with respect to the estimation of φ
can be lower bounded by the ratio

χ(φ) =
F̃y(φ)

Fz(φ)
(37)

where F̃y(φ) is the FI lower bound of φ based on y. For the
low SNR limit, it is known that for any parameter θ, without
oversampling the ratio χ(θ) converges to limσ→∞ χ(θ) = 2

π .
We start with investigating the problem of estimating φ

under the assumption of a single observation, i.e., M = 1 and
Mos = 1. For this case, the FI can be computed exactly with
(26), i.e., Fy(φ) = F̃y(φ) and (37) is the exact characterization
of the performance loss. Fig. 1 depicts χ(φ) for different SNR
values and φ in the range

[
0, π2

]
, as Fy(φ) is periodic with

period π
2 . Thus, Fy(φ) is independent of the data symbol since

all QPSK symbols modulo π
2 have the same phase. Note that

the dependency of χ(φ) on φ is only due to Fy(φ) as Fz(φ) is
independent of φ. We observe that for low SNR χ(φ) is almost
flat and for high SNR it has a maximum around φ = π

4 , i.e.,
the phase rotation that brings the QPSK symbol to the decision
boundary. This is intuitive, since at high SNR in every symbol
period the same measurement would be observed if the QPSK
symbol would be in the middle of a quadrant, which results in
a poor estimate of φ. As the SNR decreases, the noise leads
to a more uniform distribution of the received phase on the
unit circle and the FI becomes less dependent on the phase
rotation φ. Moreover, we observe that regardless of the SNR,
χ(φ) never exceeds the limit 2

π .
Let us now investigate the effect of the oversampling fac-

tor Mos under the assumption of M = 10 independent and

1 2 3 4 5 6
0.2

0.4

0.6

0.8

W = 1
2T

W = Mos

2T

Mos

E
φ
,a
[χ
(φ
)]

SNR = −20 dB
SNR = 0 dB
SNR = 5 dB
SNR = 10 dB
2
π

Fig. 2. Eφ,a [χ(φ)] for M = 10 random but known QPSK symbols

equally likely random but known transmit symbols. Since
F̃y(φ) depends on the phase rotation φ, we investigate the
expected value w.r.t. φ. Moreover, due to oversampling F̃y(φ)
also depends on the transmit symbols am, since between the
transmit symbols the transmit signal depends on the actual
transmit symbol sequence and the shape of the transmit pulse.
Since finding an optimal pilot sequence is not in the focus
of the present work, the solid lines in Fig. 2 plot Eφ,a [χ(φ)]
against Mos, where we assumed φ is uniformly distributed on
the interval [0, 2π). We observe that for low SNR and Mos = 1
the classical result of 2

π is attained and for higher SNR the
performance loss is increasing. However, with increasing over-
sampling factor the performance loss is decreasing and the 2

π
limit for Nyquist sampling can be surpassed. In [15], similar
observations were made for the time-of-arrival estimation in
a GPS like setup. Moreover, with an increasing oversampling
factor the curves are saturating due to noise correlation. The
higher Mos the more pronounced is the noise correlation, see
(34). Furthermore, oversampling only increases the accuracy
of the knowledge on the zero crossings of the signal. Infor-
mation that is only contained inside the amplitude cannot be
recovered by oversampling.

In comparison to the case of colored noise, the dashed lines
in Fig. 2 show the FI ratio for the case that we adapt the filter
bandwidth to the oversampling factor, i.e., W = Mos

2T . As can
be seen in (34), this yields white noise but increases the noise
power by Mos. Thus, the curves converge to 2

π as Mos →∞.

VI. CONCLUSION

We extended a known lower bound for the FI of real valued
observations to complex valued observations. The bound was
applied to the general problem of signal parameter estima-
tion with 1-bit quantization and circularly-symmetric complex
Gaussian noise. For the case of white noise, the FI can be com-
puted exactly and is equal to the lower bound, which shows
its applicability. We further applied the bound to the problem
of carrier phase estimation in a wireless communication re-
ceiver with 1-bit quantization and oversampling. We observe
that oversampling decreases the performance loss w.r.t. to the
unquantized system with Nyquist sampling beyond the known
low SNR limit of 2

π .
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