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Abstract—Driven by 5G requirements, research on alter-
natives to the popular cyclic-prefix orthogonal frequency di-
vision multiplexing (CP-OFDM) waveform recently arose. In
particular, non-orthogonal circularly filtered waveforms such
as generalized frequency division multiplexing (GFDM) were
proposed due to flexibility and robustness. Applying multiple-
input multiple-output (MIMO) techniques for future wireless
networks is unquestionable and thereby compulsory for any
alternative waveform. Despite advancements in accurate MIMO
detection algorithms for GFDM, compared to CP-OFDM their
complexity still exhibited a higher order of magnitude, impeding
an energy-efficient implementation. In this paper, we propose a
low-complexity formulation for iterative minimum mean squared
error with parallel interference cancellation (MMSE-PIC) detec-
tion for non-orthogonal waveforms with localized inter-carrier
interference (ICI), where we focus on the application to MIMO-
GFDM. The proposal achieves complexity similar to CP-OFDM
and we analyze its performance under realistic channel conditions
with imperfect channel state information, where we obtain up to
2dB gain of GFDM compared to OFDM. We confirm our findings
by analyzing the measured extrinsic information transfer (EXIT)
charts and show that the proposal achieves the performance of
optimal maximum likelihood (ML) detection. The results point
out the MMSE-PIC algorithm as a viable technique for iterative
MIMO receiver implementations for non-orthogonal waveforms.

Index Terms—Spatial Multiplexing, interference, low-
complexity, waveform, iterative processing

I. INTRODUCTION

Requirements of future wireless communication systems
will go beyond an increased data rate. Low latency transmis-
sions, asynchronous multiple access, heterogeneous network
architectures, and massively increased number of connected
devices pose strong challenges on the underlying physical
layer (PHY) of the system [1], [2]. As was shown numerous
times, cyclic-prefix orthogonal frequency division multiplex-
ing (CP-OFDM), despite its energy-efficient implementation
and simple equalization, cannot cope with the challenging
requirements for future networks [3], [4]. Hence, alternative
waveforms have been in the focus of academic research in the
last years [3], including non-orthogonal waveforms such as
generalized frequency division multiplexing (GFDM) [5] or
cyclic-block filtered multitone (CB-FMT) [6].

An important aspect in the research on alternative wave-
forms concerns multiple-input multiple-output (MIMO) ca-
pability, as MIMO techniques are mandatory for nowaday’s
and future wireless communications. Compared to the straight-
forward implementation for CP-OFDM, non-orthogonality of

filtered multicarrier waveforms can significantly complicate
the MIMO operation. Despite, a theoretic analysis on ca-
pacity bounds of non-orthogonal waveforms and OFDM in
frequency-selective MIMO channels [7] revealed a higher
capacity for non-orthogonal systems.

However, as the standardization for fifth generation
(5G) cellular proceeds, filtered and windowed variants of
CP-OFDM were agreed on by industry consortiums [8], [9],
[10]. They will be at the core of the 5G celluar PHY for
enhanced mobile broadband (eMBB) use cases. The main
focus of current research towards standardization is the reduc-
tion of out-of-band (OOB) emissions. Reduced OOB emission
can improve spectral efficiency by reducing the number of
required guard carriers [11] and provide more robustness for
asynchronous transmissions by reducing inter-user interference
[10]. As this goal can be already reached by simple signal
processing such as filtering and windowing, the choice of
waveforms derived from CP-OFDM by filtering or windowing
appears natural for early releases of 5G cellular standards,
since frame structure, synchronization and channel estimation
algorithms can mostly remain compared to 4G solutions.
However, a common drawback of these waveforms is the in-
flexible constraint of transmitting each data point over a single
frequency bin. This can lead to suboptimal performance in
severely frequency selective channels [7]. In this context, ad-
vanced non-orthogonal waveforms circumvent this constraint
by spreading each data point over multiple frequency bins.
However, at the same time inter-symbol interference (ISI),
inter-carrier interference (ICI) and, in case of MIMO systems,
inter-antenna interference (IAI) can occur, such that the design
of an optimal receiver can lead to impractical complexity.
Hence, to make non-orthogonal waveforms viable for practical
use, it is of major importance to design low-complexity
receivers that achieve close-to-optimal performance. The work
in this paper is motivated by this premise and we provide a
step forward for implementing these receivers with complexity
that is affordable on today’s hardware. Despite being gener-
ically applicable for non-orthogonal multicarrier waveforms,
we focus our presentation on GFDM.

In the literature, numerous algorithms for detecting spatially
multiplexed GFDM have been proposed. But, for non-iterative
schemes, GFDM generally performed worse than OFDM [12],
[13], [14], [15]. Compared to the orthogonal CP-OFDM, the
difficulty for MIMO detection for GFDM is the occurence of
3-dimensional interference, namely ISI, ICI and IAI. In order
to achieve optimal detection performance, this interference
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needs to be jointly equalized. This was not achieved in [12],
[13], [14], [15] and hence the potential of GFDM in MIMO
applications was not fully exploited. Iterative receivers [16],
[17] for MIMO-GFDM, based on a soft-input soft-output
(SISO) GFDM demapping unit and a SISO forward error
correction (FEC) channel decoder, outperformed optimally
performing OFDM schemes in terms of frame error rate (FER)
under artificial channels with severe power delay profiles. In
this paper, we focus on the well-accepted iterative minimum
mean square error (MMSE) parallel interference cancellation
(PIC) algorithm for MIMO detection. There have been various
implementation proposals in the literature [18], [19], [20],
offering competent performance and complexity against non-
linear MIMO demapping schemes such as sphere decoding
[21], [22]. Closely related, the authors in [23] proposed a
decision feedback equalizer (DFE) system for single-carrier
MIMO systems, which, as we show below, is equivalent to
MMSE-PIC. In [24], we proposed an efficient implementation
of non-iterative linear minimum mean square error (LMMSE)
receiver that permits the performance gain of GFDM over
OFDM with comparable complexity. However, the LMMSE
receiver is still far from the optimum in theory. Therefore, in
this work, we aim at extending it to MMSE-PIC for achieving
close-to-optimal performance.

The contribution of this paper is two-fold: First, we extend
the proposal from [24] for iterative MMSE-PIC equaliza-
tion and eventually achieve comparable complexity to an
equivalent OFDM implementation. The proposal bases on a
sparse factorization of the equivalent channel matrix, which
allows to jointly treat interference in three steps that can
be approximated with low-complexity Fourier transforms. We
show that the performance loss in terms of coded FER due
to this approximation is negligible. Compared to an existing
implementation of the MMSE-PIC algorithm in [25], we
significantly reduce the complexity order from cubic to quasi-
linear in the number of interfering symbols.

Second, we contribute a thorough analysis of the perfor-
mance of iterative MMSE-PIC demapping for GFDM under
realistic channel conditions. As the performance of a system
does depend on the joint behaviour of waveform and channel
code, we additionally analyze the performance of different
FEC methods, namely low-density parity check (LDPC) chan-
nel codes with sum-product algorithm (SPA) SISO decoding
and convolutional codes (CCs) with Bahl-Cocke-Jelinek-Raviv
(BCJR) SISO decoding.To this end, we present simulation
results of the proposed algorithm employing both LDPC
codes and CCs in realistic channel conditions with imperfect
channel state information (CSI). In particular, we compare the
performance of iterative and non-iterative receivers for MIMO-
GFDM and MIMO-OFDM in extended vehicular-A (EVA)
and extended typical urban (ETU) channels with mobility.
By means of analysis of extrinsic information transfer (EXIT)
charts, we show that the LDPC code is not suitable for iterative
detection. In contrast, identifying the system as a serially
concatenated code with the MIMO constellation constraint
being the outer code and the FEC constituting the inner code,
high performance with iterative decoding with SISO inner (i.e.
BCJR) and outer (i.e. MMSE-PIC) decoders can be expected

[26]. We confirm these findings with extensive numerical
simulations.

The remainder of this paper is organized as follows. Sec. II
introduces the system model and shortly summarizes MMSE-
PIC SISO demapping. In Sec. III, we employ a sparse fac-
torization of the GFDM system matrix, yielding a 3-step
estimation process for SISO MMSE-PIC detection. In Sec.
IV, we analyze the complexity of each estimation step and
propose approximations to reduce complexity to an equal level
as OFDM. Sec. V presents simulation results of the proposed
algorithms and, finally, the conclusions are drawn in Sec. VI.

Notation: Matrices and vectors are written in boldface and
with arrow as X, ~x. diag(X) denotes the diagonal of the matrix
X and diag(~x) returns a diagonal matrix with diagonal ~x.
circ(~v) returns a circulant Toeplitz matrix with ~v as its first
column. vec(X) performs vectorization of the matrix X, i.e.
stacking the columns of X on top of each other. C denotes
the set of complex numbers. CN (~µ,Σ) describes a complex
normal distribution with mean ~µ and covariance Σ.

II. SYSTEM MODEL

A. MIMO-GFDM Transmitter And Wireless Channel

Consider a NR × NT spatial multiplexing MIMO GFDM
system. The MIMO channel consists of NTNR i.i.d. multipath
fading processes associated to each transmit receive antenna
pair. As we assume the transmitter has no prior channel
knowledge, equal power allocation for the transmit anten-
nas is applied. GFDM is a block-based multicarrier scheme.
Subsequent blocks are separated by a CP which mitigates
inter-block interference (IBI). In each GFDM block, with
length of N = M · K samples, Non = M · Kon complex-
valued constellation symbols are transmitted, divided into M
subsymbols on Kon subcarriers. K is the overall number of
available subcarriers in a GFDM block. A detailed description
of GFDM itself is beyond the scope of this paper, but we refer
the readers to e.g. [5] and references therein.

Following [27], the transmit signal X for all antennas before
CP insertion can be written as

X = A [~d1, ~d2, . . . , ~dNT
]︸ ︷︷ ︸

d∈CNon×NT

(1)

where A is the N × Non GFDM time domain modulation
matrix and ~dt are column vectors with the constellation
symbols to be modulated on the tth antenna.

We denote the block discrete Fourier transform (DFT)
matrix T = FM ⊗ IKon with FM being the unitary M -point
DFT matrix. We transform the transmit signal into frequency
domain by

FNX = FNATHTd (2)
= AfD, (3)

with D = Td being the M -DFT of the M subsymbols on
each subcarrier. Moreover, as shown in [24], Af = FNATH

is equivalent to a block diagonal matrix consisting of M
bidiagonal blocks of size K × Kon after appropriate row-
and column-wise permutations. Accordingly, the solution of
a linear system involving Af can be calculated from M
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bidiagonal equation systems of size K ×Kon. This property
will be a key ingredient for the complexity reduction in Sec.
IV.

Assume a block-fading channel and the CP is longer than
the channel impulse response (CIR). With perfect synchroniza-
tion, the channel between each pair of transmit and receive
antennas becomes circulant in time and hence diagonal in the
frequency. After passing through the MIMO multipath fading
channel and AWGN, the received signal in the frequency
domain equals

~y =

 H11 . . . H1NT

...
. . .

...
HNR1 . . . HNRNT

 (INT
⊗ FNA)

︸ ︷︷ ︸
H̃

vec(d) + ~n = H̃~d+ ~n

(4)

=

 H11 . . . H1NT

...
. . .

...
HNR1 . . . HNRNT

 (INT
⊗Af )

︸ ︷︷ ︸
H

vec(D) + ~n = H ~D + ~n,

(5)

where Hrt is the diagonal channel matrix between the tth
transmit and rth receive antenna. We assume uncorrelated
transmit symbols of unit energy, i.e. E[~d~dH] = I, normalized
channels, i.e. E[tr(HrtH

H
rt)] = N , and ~n is additive white

Gaussian noise (AWGN) according to ~n ∼ CN (0, σ2
nI). Note

that in mobile channels, the condition of block-fading does
only approximately hold, as the channel changes during the
transmission depending on the channel Doppler spread. How-
ever, due to simplicity reasons but at the cost of performance,
the receiver assumes a constant channel during transmission.
We will investigate the resulting performance degradation in
the simulation results in Section V.

B. Component-wise Conditionally Unbiased (CWCU)
LMMSE Estimation

As commonly known, the conventional LMMSE estimator
is conditionally biased towards the a-priori knowledge of
the estimand [28]. Here, we introduce our notation for the
LMMSE estimation and summarize equations for an unbiased
relative, namely the CWCU LMMSE estimator. Θx denotes
the LMMSE estimator that calculates an estimate of ~x from
the measurement ~y from the linear model ~y = H~x + ~n with
a-apriori knowledge on ~x and ~n as

~x ∼ CN (~µax,Σ
a
x) ~n ∼ CN (~0,Σan). (6)

Let (ηpx,Λ
p
x) denote the LMMSE estimate and error variance

of this estimate for ~x and denote the LMMSE estimation
operation by

(~ηpx,Λ
p
x) = Θx[~y = H~x+ ~n, CN (~µax,Σ

a
x), CN (~0,Σan)]. (7)

Here, the first, second and third arguments to Θx are the linear
model with known ~y and H, the a-priori information on ~x and
the a-priori information on the noise ~n, respectively. Then, Θx

generates the LMMSE estimate and error covariance matrix by
the common LMMSE operation:

~ηpx = ~µax + ΣaxH
H(HΣaxH

H + Σan)−1(~y −H~µax) (8)

Λpx = Σax − ΣaxH
H(HΣaxH

H + Σan)−1HHΣax. (9)

This estimation is conditionally biased since E[~ηpx|~x] 6= ~x.
This is due to the fact that the effective channel matrix after
filtering, i.e. ΣaxH

H(HΣaxH
H + Σan)−1H, does not have a

unit diagonal. In predating works [25], [18], this bias was
taken care of in the log-likelihood ratio (LLR) calculation
by including the effective channel gain into the expressions.
However, we can directly overcome this bias by calculating a
CWCU LMMSE estimator [29] Φx of ~x given by

(~µpx,Σ
p
x) = Φx[~y = H~x+ ~n, CN (~µax,Σ

a
x), CN (~0,Σan)],

(10)

where the outcome of (10) is defined by

~µpx = ~µax +
HH(HΣaxH

H + Σan)−1(~y −H~µax)

diag[HH(HΣaxH
H + Σan)−1H]

(11)

and diag(Σpx) =
~1

diag[HH(HΣaxH
H + Σan)−1H]

− diag[Σax].

(12)

Here, the division of vector by vector is carried out element-
wise. For the CWCU estimator, we only provide the diagonal
elements of the a-posteri covariance matrix Σpx of ~x in a
simple form since for our purposes, considering the diagonal
of the covariance is sufficient. However, in general this does
not mean that the CWCU estimation provides uncorrelated
estimates. More details about CWCU estimation, including the
exact expression for Σpx can be found in [30].

C. Iterative Detection Based On MMSE-PIC Demapping

In this section, we summarize the common framework of
iterative MMSE-PIC SISO demapping, which has previously
been studied in e.g. [18], [31], [25] and references therein. The
central unit in the SISO demapping process is an LMMSE
estimator, that utilizes a-priori information coming from the
output of a channel decoder to provide refined information
based on the (known) channel input/output relation. In partic-
ular, the overall demapping operation is split into 3 steps:

1) Obtaining soft QAM constellation symbols from the
channel decoder LLR. Let xs,b ∈ {0, 1} be the bth
bit of the sth constellation symbol and let its a-priori
information be encoded in the LLR value LAs,b with
Pr[xs,b = 1] = 1

1+exp(LA
s,b)

. Then, mean and variance
of the a-priori constellation symbols are given by [18]

(~µad)s =
∑
d∈S

Pr[ds = d]d =
∑
d∈S

∏
b

Pr[xs,b = X−1
b (d)]d

(Σad)ss =
∑
d∈S

Pr[ds = d]‖d− (~µad)s‖2,

(13)

where Pr[ds = d] is calculated from the product of
the corresponding Pr[xs,b = X−1

b (d)] and the QAM-to-
bit mapping X−1

b (d) yields the bth bit of the complex
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constellation symbol d. In the initial iteration no channel
decoder feedback is available, i.e. ~µad = 0 and Σad = I.

2) Refining the constellation symbols by performing
CWCU LMMSE estimation with the received signal

(~µpd,Σ
p
d) = Φd[~y = H̃~d+ ~n, CN (~µad,Σ

a
d), CN (~0, σ2

nI)].
(14)

Note that in previous papers, the bias originating from
the LMMSE estimation was removed in the following
demapping operation. In the present paper we directly
remove the bias by employing the CWCU estimation.
Both techniques are numerically equilavent, but the latter
is more suitable for the formulation used in this paper.

3) Obtaining LLR from the LMMSE estimation result. Here,
an approximation is made by assuming that the noise on
each constellation symbol is independent[25]. Further-
more, optimally the a-priori knowledge on each bit is
included in the demapping process, however in [18] it
was shown that omitting the a-priori knowledge has only
marginal impact on the overall performance for SISO
MMSE-PIC demapping. Accordingly, the demapping
operation for each constellation symbol is given by [18]

LEs,b =
1

(Σpd)ss

(
min
d∈S(0)

b

|(~µpd)s − d|2 − min
d∈S(1)

b

|(~µpd)s − d|2
)
,

(15)

where S(0)
b and S(1)

b denote the set of constellation sym-
bols where the bth bit is 0 or 1, respectively. Afterwards,
the LLRs are sent to the channel decoder to estimate the
transmitted code word.

D. Relation to Iterative Decision Feedback Equalization

In this section, we establish a relation between this work
and the DFE algorithm in [23], that was tailored for single-
carrier MIMO systems. Even though [23] does not start
from the MMSE-PIC perspective, the following derivation
shows the equivalence of [23] and MMSE-PIC. Instead, [23]
performs iterative detection in combination with feedforward
and feedback filtering the received signal and decoder output,
respectively, as exemplified by (cf. eq. (6) in [23])

~µpd = W~y −V~µad. (16)

There, W and V are the feedforward and feedback filter
matrices for the current iteration. These are designed to
minimize E[‖~d− ~µpd‖2], i.e. they follow the MMSE criterion.
Particular attention is paid on avoiding self-subtraction by the
feedback filter by imposing the constraint diag(V) = ~0. To
show the equivalence to MMSE-PIC, we start from (14) to
get

~µpd = ~µad + E−1H̃H(H̃ΣadH̃
H + σ2

nI)
−1(~y − H̃~µad), (17)

with E being a diagonal matrix compensating the bias of
LMMSE estimation with

diag(E) = diag[H̃H(H̃ΣadH̃
H + σ2

nI)
−1H̃]. (18)

Defining the overall filter matrix W̃ as

W̃ = E−1H̃H(H̃ΣadH̃
H + σ2

nI)
−1, (19)

we reformulate (17) to

~µpd = ~µad + W̃(~y − H̃~µad) = W̃~y − (W̃H̃− I)~µad, (20)

which shows the relation to the DFE technique from [23].
First, we can identify the feedforward filter of the DFE as
W = W̃. Moreover, the feedback filter is given by V =
W̃H̃−I, which also fulfills the constraint diag(W̃H̃−I) = ~0.
The authors in [23] propose a low-complexity frequency
domain formulation of the DFE technique which is suitable
for the system model suffering from IAI and ISI. In this paper
we propose to reduce MMSE-PIC demapping complexity for
MIMO multicarrier systems which are subject to additional ICI
due to non-orthogonal subcarriers. Therefore, in the following
sections we first propose a formulation to split the MMSE-
PIC demapping problem into three steps and subsequently
propose approximate methods to solve them in a pipelined
and parallelized fashion.

III. LMMSE ESTIMATION WITH FACTORIZED SYSTEM
MATRIX

The direct solution of (14) for MIMO-GFDM has been
approached by us in [25] where we could solve the MMSE-
PIC problem with complexity O(KonM

3N2
TNR) due to the

banded structure of the system. In this section, we pro-
pose a novel 3-step factorization of the LMMSE estima-
tion problem by introducing an intermediate variable ~D.
~D is unitarily equivalent to the actual estimand ~d, but
its intermediate estimation allows us to reduce complexity
to O(KonM log(M)N2

TNR) in Sec. IV. This factorization,
which is based on the structure and locality of the interference,
is presented in the following. Starting from the linear model

~y = H̃~d+ ~n (21)

we need to obtain the CWCU estimate of ~d, given by

(~µpd,Σ
p
d) = Φd[~y = H̃~d+ ~n, CN (~µad,Σ

a
d), CN (~0, σ2

nI)].
(22)

However, instead of directly estimating (~µpd,Σ
p
d) in (22), we

can resort to the data in the frequency domain ~D = U~d with
U = INT

⊗ T (cf. (5)). Accordingly, the a-priori mean ~µaD
and covariance ΣaD of ~D are given by

~µaD = U~µad, ΣaD = UΣadU
H. (23)

We can now get the CWCU estimate of ~D from

(~µpD,Σ
p
D) = ΦD[~y = H ~D + ~n, CN (~µaD,Σ

a
D), CN (~0, σ2I)]

(24)

Note, that under the constraint that ΣaD is a diagonal matrix,
the equation system in (24) decays into M band-diagonal
systems each of size NTKon where the (one-sided) bandwidth
is NT , as was shown in [32], [24]. Moreover, we can show
that with a diagonal ΣaD we have (cf App. A)

(ηpd,Λ
p
d) = Θd[~µ

p
D = U~d+ ~n, CN (~µad,Σ

a
d), CN (~0,ΣpD)],

(25)
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′
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′
D

Φx[X]~µax
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~µpx
Σpx

, (~µp
x,Σ

p
x) = Φx[~y = X~x+ ~n, CN (~µa

x,Σ
a
x), CN (0,Σy)]

Legend

Fig. 1. Block diagram of the 3-step MMSE estimation process in combination
with channel decoder.

i.e. the (biased) a-posteriori LMMSE estimate of ~d can be
calculated from the CWCU a-posteriori LMMSE estimate of
~D with the linear model ~µpD = U~d + ~η where ~η contains
the uncertainty of the a-posteriori ~D. By analogy, the final
a-posteriori CWCU estimate for ~d is calculated by

(~µpd,Σ
p
d) = Φd[~µ

p
D = U~d+ ~η, CN (~µad,Σ

a
d), CN (~0,ΣpD)].

(26)

The above derivation has assumed that the covariance ma-
trix ΣaD is diagonal, which, according to (23), requires the
variances of Σad to be equal on one subcarrier. Practically,
this constraint is only fulfilled, when Σad = I, i.e. in the
initial iteration, when no decoder feedback is available1. The
constraint is violated with feedback information from the
channel decoder, as the channel code intentionally combines
bits from different carriers to gain frequency diversity. In this
case, by analogy to the estimation of (~µpd,Σ

p
d) from (~µpD,Σ

p
D)

in (26), we resort to CWCU LMMSE estimation of (~µaD,Σ
a
D)

from the a-priori knowledge (~µad,Σ
a
d), given by

(~µaD,Σ
a
D) = ΦD[~µad = UH ~D + ~η, CN (~µa

′
D ,Σ

a′
D), CN (~0,Σad)].

(27)

Here, (~µa
′
D , Σa

′
D ) is some a-priori knowledge on the distribution

of ~D. In the simplest case we have (~µa
′
D ,Σ

a′
D) = (~0, I),

however below we introduce the concept of inner demapping
operations to reliably resolve the approximation error by
supplying more accurate (~µa

′
D ,Σ

a′
D).

Accordingly, we can split the overall MMSE-PIC detection
process into 3 steps:

1) Calculate (~µaD,Σ
a
D) as the CWCU LMMSE estimate of

~D from the model ~µad = UH ~D + ~η, ~η ∼ CN (~0,Σad) and
(~µa

′
D ,Σ

a′
D).

2) Calculate (~µpD,Σ
p
D) as the CWCU LMMSE estimate of

~D from the received signal ~y = H ~D+~n and (~µaD,Σ
a
D).

3) Calculate (~µpd,Σ
p
d) as the CWCU LMMSE estimate of

~d from the model ~µpD = U~d + ~η, ~η ∼ CN (~0,ΣpD) and
(~µad,Σ

a
d).

We want to emphasize that, despite this treatment focuses
on the application to GFDM, the proposed 3-step estimation
technique to first estimate DFT-transformed data symbols can
readily be employed for other non-orthogonal waveforms with
localized ICI which obey the linear model (21). For the case of
no a-priori knowledge, this has already been demonstrated in

1To be precise, Σa
D can also be diagonal, if the decoder is in overall very

confident and the covariance becomes close to zero. However, in this case, the
detection problem is already solved by having found the correct code word.

[24]. The present extension of transforming a-priori knowledge
from the time to the frequency domain and vice versa can be
straight-forwardly applied to other waveforms.

Note, that in case of UHΣadU being diagonal, the CWCU
LMMSE estimate of (~µaD,Σ

a
D) in (27) and the direct transform

from time to frequency in (23) are equivalent. However,
in case of ΣaD not being diagonal, the LMMSE estimation
process tends to produce less correlated estimates, compared
to the operation in (23) and hence provides more decoupled
values to step 2). Nethertheless, the final LMMSE estimate
of ~d will not be exact due to ignored correlation between
frequency-domain data ~D. In order to mitigate this problem, it
is possible to perform D inner demapping iterations between
steps 1) and 2), where the output (~µpD,Σ

p
D) of step 2) can

serve as a-priori knowledge (~µa
′
D ,Σ

a′
D) for step 1). This way,

the estimation performance can be improved, at the cost of
increased complexity. However, depending on the number of
these iterations, this operation can also lead to suboptimal
convergence.

Fig. 1 illustrates the contained loops, LMMSE estimation
blocks and overall receiver structure for the proposed detection
algorithm. Using the information from the channel decoder,
(~µad,Σ

a
d) is generated by soft-modulating the respective a-

posteriori LLRs as in (13). Then, this information is used to
acquire (~µaD,Σ

a
D) in step 1) which is in turn used to gain

improved knowledge (~µpD,Σ
p
D) in step 2). Finally, this infor-

mation is transformed to (~µpd,Σ
p
d) in step 3) and forwarded to

the constellation demapper as in (15) and the channel decoder,
closing the iteration loop.

IV. APPROXIMATE SOLUTION AND COMPLEXITY
ASSESSMENT

This section proposes an approximation to the SISO
MMSE-PIC demapping operation for GFDM to reduce com-
plexity and improve parallelizability. Considering Fig. 1, the
3 steps for the LMMSE estimation need to be carried out
sequentially, hence in order to reduce latency, each step should
be fast and parallelizable.

A. Steps 1) and 3): Transforming frequency to time-domain
data and vice versa

Initially, in (27) in step 1) a CWCU LMMSE estimation of
the frequency domain data based on the time-domain data is
to be calculated by

~µaD = ~µa
′
D +

(Σa
′
D + UΣadU

H)−1(U~µad − ~µa
′
D)

diag((Σa
′
D + UΣadU

H)−1)

ΣaD =
1

diag((Σa
′
D + UΣadU

H)−1)
− Σa

′
D .

(28)

Note that since U = INT
⊗FM⊗IKon

, (28) can be decoupled
into NTKon smaller systems of size M ×M with coefficient
matrices {Xkt}k=0,...,Kon−1;t=0,...,NT−1 given by

Xkt = Σa
′
D,kt + FMΣad,ktF

H
M = Σa

′
D,kt + circ

(
1√
M
FMdiag(Σad,kt)

)
.

(29)

In (29), the index (·)kt denotes to select the M elements that
correspond to the kth subcarrier from the tth transmit antenna.
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Calculating the numerator in (28) requires to solve X−1
kt
~b for

the right-hand side ~b = U~µad − ~µa
′
D , whereas the denominator

requires knowledge of diag(X−1
kt ). Even though Xkt is a

highly structured matrix by being the sum of a positive definite
diagonal and circulant matrix C + D, no specific solvers for
these kinds of systems exist in the literature. Most closely,
in [33] an algorithm for systems of the form (C + jD) is
presented, where C has eigenvalues with positive real part and
D is real-valued. Hence, in order to not be restricted by the
O(M3) complexity of brute-force matrix inversion, we resort
to approximate methods.

Let us first consider diag(X−1
kt ). As shown in the following,

we can approximate ~xk,t = diag(X−1
kt ) by ~x′kt given by

diag(X−1
kt ) = ~xkt ≈ ~x′kt = diag((Σa

′
D,kt + 1

M tr(Σad,kt)I)
−1)
(30)

from the observation that the diagonal of Xkt is larger than
its off-diagonal elements.

We assume the elements σ2
d,i of Σad,kt are i.i.d. random

variables that are distributed according to some distribution2.
Since σ2

d,i ∈ (0, 1] they have non-zero mean and we can model

σ2
d,i = σ̄2

d + ri (31)

ri ∼ D(σ2
r), (32)

where σ̄2
d is the mean of the a-priori variance information of ~d

and ri follows some zero-mean distribution with variance σ2
r .

Note that due to the boundedness of σ2
d,i ∈ (0, 1], σ2

r is limited
by σ2

r ≤ r2
max with rmax = min(σ̄2

d, 1 − σ̄2
d). The corner

case σ2
r = r2

max corresponds to a degenerate distribution of
maximum variance with density p(r) = 1

2 (δ(r−rmax)+δ(r+
rmax)). We can now calculate the expected value of the first
column ~c1 of the circulant matrix FMΣad,ktF

H
M by

~̄c1 = E[~c1] = 1√
M
FME[diag(Σad,kt)] = σ̄2

d~e1, (33)

which holds because of the identity 1√
M

circ(FM~v) =

FMdiag(~v)FH
M for any M−dimensional vector ~v and

E[diag(Σad,kt)] = σ̄d~1. There, ~e1 is the first column of an
M ×M identity matrix. Furthermore, the variance on each
element of ~c1 is given by

E[(~c1 − ~̄c1)(~c1 − ~̄c1)H] = σ2
rI. (34)

Hence, on average ~c1 equals σ̄2
d~e1 and each element varies

with standard deviation σr < σ̄2
d, which is less than the mean

of the first element of ~c1. Eventually, we can conclude that the
diagonal of Xkt is larger than its off-diagonal elements and
the expression in (30) approximately holds, where we have
estimated the true mean σ̄2

d from the elements of Σad,kt by

σ̄2
d ≈

tr(Σa
d,kt)

M .
Figure 2 numerically evaluates the normalized approxima-

tion error ρkt of (30) given by

ρkt = E

[‖~xkt − ~x′kt‖2
‖~xkt‖2

]
. (35)

2Considering that the a-priori knowledge for the demapper is generated
from the channel decoder including a possible interleaver, this assumption is
valid.

5 10 15 20 25

−19

−18.5

−18

−17.5

−17

M

ρ
k
t
[d
B
]

Fig. 2. Numerical evaluation of MSE ρkt of approximation of ~xkt with
~x′kt, given by (35). In the simulation, the diagonal of both Σa

d,kt and Σa′
D,kt

contain independent uniformly distributed entries in the range (0, 1].

Notably, the approximation error increases with the system
size M . Qualitatively, we can explain this observation by the
uncertainty incorporated by the approximation. An accurate
calculation of ~xkt considers 2M parameters (M variables
on the diagonals of both Σad,kt and Σa

′
D,kt), whereas the

approximation ~x′kt only uses M + 1 variables (M diagonal
entries of Σa

′
D,kt and tr(Σad,kt)) to estimate ~x′kt. However,

within the analyzed range of M the normalized squared error
remains below -17dB3 and hence the approximated diagonal
~x′kt is 2% close to the correct diagonal ~xkt.

For efficiently calculating the solution to X−1
kt
~b = (C +

D)−1~b, we note that multiplying with a diagonal matrix
is trivial and for a circulant matrix it can be done with
quasilinear complexity via the DFT. Accordingly, we can
employ the iterative conjugate gradient (CGD) method [34],
which converges quickly to the exact solution. However, by
being integrated in an iterative overall detection process, it
might even not be necessary to find the exact solution to (28)
in each outer iteration, but an approximate solution suffices.

Tab. I outlines the process for solving the system (Σa
′
D,kt +

FMΣad,ktF
H
M )−1(F~µad,kt − ~µa

′
D,kt) of step 1) with the CGD

method and summarizes the required number of operations
for each step. As the CGD method requires an initial starting
point for the iterations, we use the approximate inverse in
(30) to calculate an initial solution. The same algorithm can
also be used for step 3) of the LMMSE estimation process,
by replacing the corresponding variables. Note that in the last
iteration, only the first two steps of the loop are necessary,
since the remaining steps yield values for the following itera-
tion. We finally note that all NTKon small M×M systems are
independent and can be solved in parallel, making it suitable
for a parallelized implementation.

3Evaluations for larger M show that ρkt is bounded by -16.5dB, not shown
in the figure.
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TABLE I
ALGORITHM DESCRIPTION OF THE CONJUGATE GRADIENT METHOD FOR
LMMSE STEPS 1) AND 3). DFT DENOTES THE OPERATION COUNT FOR

AN M -POINT DFT, I.E. M logM COMPLEX OPERATIONS, WHICH IS
QUASILINEAR IN M .

Calculation Add. Mult. Div. DFT Remarks

~b = FM~µad,kt − ~µ
a′
D,kt M 1 Calculating the RHS of the system

~x0 = (Σa′
D,kt +

tr(Σa
d,kt)

M
I)−1~b 2M − 1 0 M + 1 0 Initial guess of the solution

~r0 = ~b− (Σa′
D,kt + FMΣa

d,ktF
H
M )~x0 2M 2M 0 2

~p0 = ~r0, k = 0
Repeat

αk =
~rHk ~rk

~pH
k

(Σa′
D,kt

+FMΣa
d,kt

FH
M

)~pk
4M − 2 4M 1 2

~xk+1 = ~xk + αk~pk M M 0 0 Refined solution, break at k = KMax − 1

~rk+1 = ~rk − αk(Σa′
D,kt + FMΣa

d,ktF
H
M )~pk M M 0 0 reuse value of αk calculation

βk =
~rHk+1~rk+1

~rH
k
~rk

M − 1 M 1 0 reuse nominator from αk calculation

~pk+1 = ~rk+1 + βk~pk M M 0 0
k = k + 1

Overall count KMax = 1 10M − 3 7M M + 2 5
Overall count KMax = 2 18M − 6 15M M + 4 7
Overall count KMax = 5 42M − 15 39M M + 10 13

B. Step 2): LMMSE estimation for frequency domain data

According to the results in [25], the LMMSE estimation
process for step 2) can be written as

~µpD = ~µaD +
(HHHΣaD + σ2I)−1(HH~y −HHH~µaD)

diag((HHHΣaD + σ2I)−1HHH)

ΣpD =
1

diag((HHHΣaD + σ2
nI)
−1HHH)

− ΣaD.

(36)

As shown in [24], the equation system in (36) is equivalent
to M systems of size NTKon each, where each equation
system is governed by a band-diagonal matrix with (single-
sided) bandwidth B = NT . However, this only exactly holds,
if ΣaD is a diagonal matrix, which is the case when no decoder
feedback was incorporated into the demapping operation. In
any other case, we approximate the solution by ignoring the
off-diagonal elements of ΣaD and still consider the systems
separately. Then, following [25] for a band-diagonal system,
we perform the estimation with complexity O(KonNRN

2
T )

for each of the M systems. Since the systems are decoupled,
all systems can be solved in parallel, creating no extra penalty
on the overall latency.

C. Overall Complexity

Let O(FN ) denote the arithmetic complexity of an N -
point FFT, which we approximate by O(FN ) ≈ O(N logN).
Considering the straight-forward implementation of the SISO
MMSE-PIC demapping operation for OFDM with symbol
length MK where MKon subcarriers are allocated, the or-
der of complexity in terms of arithmetic operations can be
estimated by

COFDM = NRO(FKM ) + IMKonO(NRN
2
T ) (37)

where I denotes the number of MMSE-PIC iterations. There,
the first term corresponds to the transformation of the received
time-domain signal into the frequency domain. The second

TABLE II
GFDM AND OFDM CONFIGURATION USED IN THE SIMULATION.

Parameter Symbol GFDM OFDM
# Available Subcarriers K 128 1536
# Allocated Subcarriers Kon 3 or 24 12 · {3, 24}
# Subsymbols M 12 1
# Allocated Subsymbols Mon 12 1
# Tx, Rx antennas T,R 4 4
Prototype filter g[n] RC Rect
Filter rolloff α 0 or 1 -
CP length - 4.7µs (EVA channel); 16.7µs (ETU channel)
Time-Window - RC window, 16 samples ramp up
Modulation and coding - {(16-QAM, r = 1/2),(64-QAM, r = 3/4)}
Channel Model 3GPP EVA, ETU; fd = {0, 30, 100}Hz, Jake’s Model Fading
CSI Perfect CSI or Imperfect CSI: Channel MSE = SNR+3dB
LDPC Code WiMax LDPC with SPA log-MAP decoder
Convolutional Code {133, 171}8 recursive systematic CC (RSCC) with BCJR log-MAP decoder
# GFDM/OFDM blocks per frame F LDPC: 8; Conv.: 7

term describes the complexity of the MKon LMMSE inver-
sions of the NR×NT channel matrix of each subcarrier, which
need to be carried out in each iteration. Now, considering
the arithmetic complexity for GFDM with Kon allocated
subcarriers, we end up with

CGFDM = NRO(FKM ) + I(NTKonO(FM ) +MO(KonNRN
2
T ) +NTKonO(FM )).

(38)

Again, the first term corresponds to the transformation of the
received time-domain signal to the frequency domain. The
second, third and fourth term correspond to steps 1), 2) and 3)
of the MMSE-PIC demapping for each iteration, respectively.
In total, we find

COFDM = NRO(FMK) + IMKonO(NRN
2
T ) (39)

CGFDM = NRO(FMK) + IMO(KonNRN
2
T ) + 2INTKonO(FM ),

(40)

showing that the proposed algorithm for GFDM has only
a quasi-linear overhead in number of symbols and streams
compared to OFDM and in complete both systems exhibit
the similar order of complexity in terms of big-O notation.
Compared to the solution provided in [25], where the complete
system using H̃ was solved at once with complexity

CGDFM,[25] = NRO(FMK) + IO(KonM
3NRN

2
T ), (41)

the current proposal offers linear complexity in the num-
ber of active subcarriers Kon and quasi-linear complexity
O(M logM) in the number of subsymbols M which is a sig-
nificant gain compared to the cubic complexity in M obtained
in [25]. Furthermore potential for high-level pipelining and
parallelism for a practical implementation is readily available
by splitting the estimation process into 3 sequential steps, with
each step consisting of independent systems.

V. SIMULATION RESULTS

In this section we present performance simulation results
of the proposed algorithms using a 4x4 MIMO system under
realistic Long-Term Evolution (LTE) EVA and ETU channel
models as defined by 3GPP with mobility and maximum
delay spread of 2.5µs and 5µs, respectively. Tab. II shows the
simulation parameters that have been adopted in the present
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Fig. 3. Frame structure.
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Fig. 4. Performance of the approximate solution with DFT-spread detection
and internal demapper iterations. ETU power delay profile with FD = 30Hz;
16-QAM r = 0.5, α = 1,Kon = 3.

simulation. The GFDM parameters are derived from an OFDM
LTE system with 15MHz bandwidth with sampling frequency
of 23.04MHz. We have made GFDM and OFDM blocks of
equal length and 12 subsymbols are contained in one GFDM
block. Hence, one GFDM subcarrier has the width of one
LTE physical resource block (PRB). Additionally, to be in
line with commonly applied OOB reduction methods, we have
added a raised cosine time-window of length of 16 samples to
each OFDM and GFDM block, to emulate a windowed-GFDM
[35] or windowed-OFDM [11] scheme. The frame structure of
the adopted scheme is shown in Fig. 3, where F GFDM or
OFDM blocks are preceded by a single preamble, that is used
for channel estimation. The channel was implemented using
Jake’s model with a given Doppler spread, i.e. the channel was
time-variant. However, the CSI for the receiver was obtained
only from the preamble and assumed to be constant during the
full frame. We have performed simulations with perfect and
imperfect CSI where we emulate the channel estimation by
supplying erroneous CSI to the demapping unit. Assuming an
LMMSE channel estimation unit has knowledge of the power
delay profile (PDP), the channel estimate is given by adding
random noise of variance depending on the signal-to-noise
ratio (SNR) to the correct impulse response, i.e. ~h = ~̂h + ~nh

where ~̂h is the obtained CSI and ~h is the average impulse
response during the preamble. Further, ~nh ∼ CN (~0, σ2

h) is the
channel estimation error. The SNR is defined as 1

σ2
n

= µr Eb

N0

and for imperfect CSI we have σ2
h = σ2

n/2. For perfect CSI,
we set σ2

h = 0.
Fig. 4 compares the performance of the approximate solu-

tion of the LMMSE estimation process by doing the estimation
in the symbol’s frequency domain as described in Sec. IV
against the exact detection. The figure shows both the mea-
sured information transfer curves as well as the obtained FER
performance with perfect and imperfect CSI. The information
transfer curves depict the mutual information between the
coded bits and the output of the demapper. Therefore, they
describe the amount of the code bit information that is acces-
sible by the demapper through the channel observation and the
a-priori information. In other words, the information transfer

curves describe the information gained by the demapper from
the received signal, when provided a given amount of a-priori
information. Using information transfer curves, the behaviour
under iterative detection methods can be inferred. For more
information on information transfer charts, we refer the reader
to [36], [37]. In Fig. 4 all information transfer curves start in
the same point, and the FER performance of all schemes is
equal with no iterations, confirming that the 3-step estimation
process is exact when no a-priori knowledge is available in
the system.

When decoder feedback is available, with perfect CSI the
performance of the approximate methods is only slightly worse
than the exact solution. A very different result occurs for
the more realistic case of imperfect CSI as a performance
difference of almost 1.5dB at a FER of 10−3 can be ob-
served. In particular, performing no extra demapping iterations
(D = 1) and using the approximate CGD method with C = 5
CGD iterations even outperforms the exact MMSE-PIC SISO
demapper in terms of FER. We can explain this behaviour
by the fact that the exact MMSE-PIC demapper does not
consider imperfect CSI, but only considers the noise term in
the calculation of a-posteriori LLR. As such, the exact SISO
demapper tends to be over-confident with imperfect CSI and
the iterative receiver might get stuck in a local minimum and
does not necessarily reach the optimum solution. In contrast,
the approximate method with D = 1, C = 5 introduces
approximation errors into the system, which occur as extra
noise at the demapper. This extra noise can reduce the over-
confidence and hence aids in reaching a more optimal solution.
The parametrization D = 2, C = M yields a performance
close to the exact solution, showing that this configuration
approximates the exact MMSE-PIC demapping accurately. On
the other hand, the parametrizations D = 2, C = {2 or 5}
perform ≈ 1dB worse than the exact SISO MMSE-PIC
demapping. To conclude, we find that performing internal
demapping operations (D > 1) in combination with an exact
solution of (28) yields a performance that is close to the
direct solution of (22). In contrast, for imperfect CSI the
parametrization D = 1, C = 5 even outperforms the direct
solution of (22) in terms of FER at lower complexity. With
perfect CSI, there is only a marginal difference between all
investigated parametrizations. Hence, in the following evalu-
ations, we employ the parametrization D = 1, C = 5 if not
otherwise stated.

Fig. 5 shows the information transfer chart of the SISO
MMSE-PIC demapper for GFDM and OFDM in a block-
fading ETU channel. Confirming the results in [25], the GFDM
and OFDM curves intersect and the intersection moves left
with increasing SNR, exhibiting potential that iterative GFDM
schemes can outperform iterative OFDM schemes. However,
the effect is not as pronounced as in [25], due to significantly
less frequency diversity in the more realistic ETU channel.
Interestingly, for Eb/N0 = 15dB, the starting point of the
GFDM curve is above the OFDM curve, indicating that al-
ready a non-iterative GFDM LMMSE receiver can outperform
OFDM. Additionally, Fig. 5 presents the information transfer
chart for the BCJR decoder of the employed {133, 171}8
RSCC and the sum-product algorithm (SPA) decoder of the
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2
. GFDM employs the direct solution of (22).

WiMax LDPC code. For the SPA, the characteristic for dif-
ferent SPA iteration counts are shown. As shown, the SPA
performance improves with more iterations, and accordingly
we chose to use 100 iterations for the subsequent FER per-
formance measurements. Comparing the shape of the channel
decoder and demapper curves, it becomes apparent why an
LDPC channel code does not perform well with the iterative
detection scheme, but well with non-iterative detection.

The curve of the more powerful LDPC code in general
proceeds steeper and more horizontally than that of the CC, as
is shown in Fig. 5b. Hence, as soon as the input information
Ia (y-Axis in Fig. 5b) exceeds a certain threshold, which is
roughly Ia ≥ 0.6 for the used LDPC code, the SPA can recover
the transmitted codeword. The CC requires approximately
Ia ≥ 0.76 to successfully decode a received codeword. Hence,
in a non-iterative scheme the LDPC code will significantly
outperform the CC as it essentially needs a lower starting point
of the demapper curve and hence lower SNR for a successful
decoding.

However, the picture changes in an iterative detection
setting, where the channel decoder and demapper exchange
information. In this case, in principle successful decoding
is possible when the tunnel between demapper and decoder
curves is open [36]. Fig. 5b shows a hypothetic demapper
curve showing an open tunnel between the CC and demapper
curve. The tunnel is closed when considering the LDPC
code. Accordingly, we expect a superior behaviour of the
CC compared to the LDPC code when operating in iterative
detection.

Note, that above statements only have qualitative value, as
the EXIT chart analysis requires infinitely long codewords
with perfect interleaving, which is certainly not fulfilled in
the present setup. For more information on using the EXIT
chart with finite code words we refer the reader to e.g. [38].
Our findings are confirmed in existing literature, where it has
been shown in e.g. [21] that the CC decoder exhibits a better
energy consumption-performance tradeoff compared to more
powerful channel codes when employed in iterative receiver
structures. Moreover, the authors in [39] designed irregular
CCs that significantly outperformed more powerful Turbo and
LDPC codes in iterative detection settings in combination with
MIMO demappers. In fact, the combination of the MIMO
constellation constraint and the CC can be considered as a
serially concatenated code [26], which can, in contrast to a
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Fig. 6. Performance of convolutional and LDPC channel codes with and
without MMSE-PIC iterations. Here, the channel exhibits an EVA power delay
profile, assuming both perfect and imperfect CSI. r = 1

2
, α = 1,Kon = 3.

single CC, result in compelling FER performance [40]. Hence,
for the upcoming FER performance simulations, we expect
the CC to outperform the LDPC code in an iterative receiver
context. On the other hand, with no iterations, the LDPC code
is expected to outperform the CC due to its steeper EXIT
curve, once the initial input Ia threshold is exceeded.

Fig. 6 shows the performance of the LMMSE and MMSE-
PIC receivers with CC and LDPC channel codes for block-
fading and time-varying EVA channels with perfect and im-
perfect CSI. As qualitatively derived from Fig. 5, for a non-
iterative LMMSE detector, the LDPC code outperforms the
CC by approximately 4dB for a FER of 10−2 in the block-
fading case for perfect CSI. On the contrary, with the MMSE-
PIC detector, the CC performs better after convergence, out-
performing the LDPC code by 1.5dB for a FER of 10−2. In
overall, for block-fading channels a gain of 5dB is achieved
for MMSE-PIC detection with CCs compared to non-iterative
detection employing LDPC codes. The gain increases when the
Doppler spread of the channel increases. Similar observations
can be done for the case of imperfect CSI, where all curves
are shifted approximately 7dB to the right. We have obtained
similar relations between LDPC and CCs before and after
convergence for different code rates, power delay profiles and
doppler spreads and perfect and imperfect CSI (not shown).
Accordingly, in the subsequent figures we focus on the LDPC
code for the non-iterative receiver, whereas we employ CCs
for the iterative receiver.

When comparing the performance between GFDM and
OFDM in Fig. 6, we find that for the non-iterative case,
GFDM shows a steeper slope in the FER curve, eventually
crossing the OFDM curve, which can again be explained with
the findings from Fig. 5. Accordingly, GFDM outperforms
OFDM by roughly 0.8dB at FER=10−3 in the block-fading
case for perfect CSI. For imperfect CSI we can observe a
greater robustness of GFDM against imperfect CSI and GFDM
outperforms OFDM by 1dB at FER=10−3. With fd = 30Hz,
the effect is emphasized and also the error floor for GFDM
due to the time-variant channel is reduced. When fd = 100Hz,
the channel varies too quickly, the CSI soon becomes outdated
and reliable detection with the employed frame structure and
channel estimation is not feasible. Even, for SNR>10dB, the
FER increases with SNR. We can explain this behaviour with
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the demapper being too confident due to the low noise variance
since it does not consider the time-variance of the channel.
This leads to poor information sent to the channel decoder
which eventually degrades FER performance.

Fig. 7 compares the convergence of the iterative receivers
for GFDM and OFDM in an ETU block fading channel, using
CC and LDPC codes. As shown, with no iterations, the LDPC
code outperforms the CC, however its gain during iterations
is below that of the CC, eventually performing inferior than a
CC. In addition, it is shown that for few iterations (<3), OFDM
performs superior than GFDM. Though, for more iterations,
GFDM converges to a lower FER, eventually outperforming
OFDM after 4 iterations and converging at 8 iterations. These
findings emphasize the necessity of an iterative receiver for
GFDM in order to beneficially consider the additional ICI and
ISI.

Fig. 8 compares the FER performance for a higher mod-
ulation and coding scheme (MCS), namely 64-QAM and
r = 3/4, in block-fading EVA and ETU channels with perfect
and imperfect CSI. Additionally, we have simulated a system
with more allocated subcarriers, i.e. Kon = 24. To this end,
we have extended the CC codeword to span all available
resources. For the LDPC code, due to its limited configuration
options, we have concatenated several LDPC code words of
length 2016 bits and interleaved them over all subcarriers and
subsymbols such that each codeword experiences the same
frequency diversity.

First, comparing the ETU and EVA channels, we observe a
steeper slope in the FER curves for the ETU channel. This can
be straight-forwardly explained by the larger frequency diver-
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Fig. 9. ML lower bound for the GFDM and OFDM. ETU power delay profile
with static block-fading, r = 0.5, α = 1,Kon = 3.

sity of the ETU channel. Additionally, comparing the curves
for Kon = 3 with Kon = 24 we observe a steeper slope for
the Kon = 24 curve. Again, this is explained by a bigger fre-
quency diversity when a codeword can span more subcarriers.
A fundamental difference between GFDM and OFDM can be
observed when considering the non-iterative LMMSE receiver
for Kon = 24: Despite GFDM was outperforming OFDM for
Kon = 3, for Kon = 24 GFDM performs more than 2dB
worse than OFDM and the slope of both curves is equal. We
can explain this by the increased amount of self-interference
in GFDM when Kon = 24. In this case, the LMMSE
equalizer cannot reliably resolve the interference and the
performance degrades. In contrast, comparing the performance
of the iterative schemes, we observe that for Kon = 24 GFDM
shows a steeper slope in the FER curve compared to OFDM.
This indicates that the iterative GFDM receiver can harvest
more frequency diversity from the multipath channel due to
the wider subcarriers. Eventually, in the ETU channel GFDM
outperforms OFDM for FER=10−4 by 1dB for both perfect
and imperfect CSI. In the EVA channel, OFDM performs
superior than GFDM until FER=10−4. Again, these findings
emphasize the statement [13] that only an iterative receiver
scheme can exploit the foreseen performance gain for GFDM
in frequency selective channels [7], by beneficially considering
the self-interference. In fact, these observations point out
an important tradeoff of non-orthogonal waveforms which
are polluted by self-interference: If the receiver is capable
of accurately resolving the interference e.g. using iterative
detection, more self-interference yields superior performance,
since the inner part of the serial code concatenation becomes
stronger. However, in case the interference cannot be resolved
as with the non-iterative LMMSE receiver, self-interference
can severely degrade the FER performance since it eventually
appears as extra noise after equalization.

Considering the optimally achievable maximum likelihood
(ML) performance, Fig. 9 presents the obtained FER per-
formance of the converged OFDM and GFDM demodulators
along with an ML performance lower bound that was obtained
with a genie-aided technique as in [17]: Upon convergence
of the detection, the distance dR of the detected codeword
to the received signal is compared to the distance dT of the
transmitted codeword to the received signal. If dR < dT , an
optimal ML detector would also yield an error. If dR > dT , it
is assumed that an optimal ML detector would have found
the correct solution. This process overestimates the perfor-
mance of the ML detector and hence yields a lower bound
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on ML decoding performance. The tightness of the bound
becomes better, when the detection algorithm approaches the
ML decoding performance. As is shown in Fig. 9, the MMSE-
PIC detector approaches the ML bound for higher SNR when
using the convolutional code. The obtained results show that
the proposed iterative detection algorithms achieve the optimal
performance for the given signal structure when using a con-
volutional code. Further, the ML bound for the GFDM system
is roughly 0.5dB left to the OFDM ML bound, showing the
benefits of frequency diversity and ICI for higher SNR. With
an LDPC code, the ML bound could not be calculated with
the proposed technique, since the obtained FER performance
was too far away from the optimal ML performance. In
particular, the lower bound estimate was FER>0, since for each
erroneously detected frame we experienced dR > dT in the
LDPC coded case. Here, we again see the superiority of the CC
compared to the LDPC code, as the CC reaches the optimally
achievable performance in the considered iterative receiver due
to its interaction with the SISO MMSE-PIC demapper.

VI. CONCLUSION

In this paper we have proposed a low-complexity approxi-
mation of the MMSE-PIC detector for non-orthogonal wave-
forms, which bases on a sparse factorization of the equivalent
channel matrix. With this approximation, the detection com-
plexity becomes the same order as OFDM and the operation
can be easily parallelized, allowing for low-latency high-
throughput implementations. Simulations of achieved FER for
MIMO-GFDM show only a negligible performance degra-
dation compared to the exact MMSE-PIC detector, making
the proposal a viable option for the implementation of future
wireless communication systems.

In addition, we have thoroughly analyzed the FER per-
formance of iterative MMSE-PIC and non-iterative LMMSE
detectors for MIMO-GFDM under realistic channel conditions.
We have investigated the performance when either using
LDPC codes or convolutional codes (CCs) as the forward
error correcting code. When using the CC, the combination
of MIMO constellation constraint and CC can be considered
as a serially concatenated code, which can eventually reach
optimal performance with respect to the ML criterion. In this
sense, we have shown that the application of CCs is superior
to LDPC codes in terms of FER in iterative receiver structures.
In particular, our simulations have shown that the CC in
combination with the iterative MMSE-PIC receiver structure
can reach the optimal ML decoding performance.

When comparing the FER performance of GFDM and
OFDM, we have seen that for small subcarrier allocations,
GFDM outperforms OFDM in the non-iterative receiver case.
However, when more subcarriers are allocated, the non-
iterative receiver cannot cancel all interference and GFDM be-
comes inferior. In contrast, when considering iterative MMSE-
PIC structures, the additional ICI can be considered by the
SISO demapper, eventually leading to a steeper slope of
obtained FER curves compared to OFDM. With the iterative
MMSE-PIC receiver, GFDM performed equal or even outper-
formed OFDM in various channel conditions. The findings

make the proposed low-complexity MMSE-PIC demapper a
viable method for the implementation of alternative waveforms
for future wireless systems.

VII. ACKNOWLEDGEMENTS

The work presented in this paper was sponsored by the
Federal Ministry of Education and Research within the pro-
gramme "Twenty20 - Partnership for Innovation" under con-
tract 03ZZ0505B - "fast wireless". The computations were
performed at the Center for Information Services and High
Performance Computing (ZIH) at TU Dresden.

APPENDIX

A. Proof of (25)

Starting from the biased LMMSE estimate of ~D from the
received signal ~y

ηpD = µaD + ΣaDH
H(HΣaDH

H + σ2I)−1(~y −H~µaD) (42)

ΛpD = ΣaD − ΣaDH
H(HΣaDH

H + σ2I)−1HΣaD, (43)

by assuming H̃ = HUH,~µad = UH~µaD and Σad = UHΣaDU
we calculate

UHηpD = ~µad + ΣadH̃
H(H̃ΣadH̃

H + σ2I)−1(y − H̃~µad) = ηpd,
(44)

UHΛpDU = Σad − ΣadH̃
H(H̃ΣadH̃

H + σ2I)−1H̃ = Λpd (45)

Note that from (cf. (12))

(ΣpD + ΣaD)−1 = diag(HH(HΣaDH
H + σ2I)−1H) (46)

directly follows (cf. (11))

(ΣpD + ΣaD)−1(~µpD − ~µaD) = HH(HΣaDH
H + σ2I)−1(~y −H~µaD).

(47)

Now, by substituting (47) into (44) we end up with

ηpd = UHηpD = ~µad + UHΣaD(ΣpD + ΣaD)−1(~µpD − ~µaD) (48)

= ~µad + ΣadU
H(UΣadU

H + ΣpD)−1(~µpD −UH~µad).
(49)

Similarly, by using (46) in (45) we get

Λpd = UHΛpDU = Σad −UHΣaD(ΣpD + ΣaD)−1ΣaDU (50)

= Σad − ΣadU
H(UΣadU

H + ΣpD)−1UHΣad
(51)

Now, comparing (49) and (51) with (25), the proof is finished.
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