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Efficient Architecture for Soft-Input Soft-Output
Sphere Detection with Perfect Node Enumeration

Esther P. Adeva Member, IEEEand Gerhard. P. Fettweigellow, IEEE

Abstract—The application of the turbo principle allows to
exploit the full potential of MIMO communications, at the cost
of increasing the computational effort at the receiver. In he
context of soft-input soft-output (SISO) tree search dete@n,
the computation of metric values and of the optimal node
order represent two of the most computationally demanding
operations. Heuristic approaches may be applied to reducehe
complexity, but their accuracy is compromised by the effecthat
the input soft information has on the node ordering. The design of
adaptive, good-performing and cost-effective tree searctietectors
for iterative receivers represents hence a challenging t&s To
alleviate these complexity and performance loss drawbacksan
efficient MIMO sphere detector realization is proposed in ths
work. A novel smart-sorting enumeration approach offers a
significant gain in terms of throughput (from 40% up to a factor
5) and energy efficiency (up to80% energy saving in the low SNR
regime) with regard to preceding implementations. Owing tothe
additional low delay and area cost reported, the proposed dggn
represents a very promising candidate towards a fast, accate,
and efficient MIMO detector.

Index Terms—Multiple-input multiple-output (MIMO), soft-
input soft-output (SISO) sphere detection (SD), Schnorr-Echner
(SE) enumeration, ASIP architecture, VLSI design.

I. INTRODUCTION

ULTI-ANTENNA detection belongs to the most

computationally intensive constituents of the
ceiver's baseband signal processing,
spatial-multiplexing transmission. Designing adaptigepd-

efficient manner represents one of the major challengedin so
input soft-output (SISO) detection. The Schnorr-EuchSé)(
enumeration is a widely known strategy to find the optimal
sequence of symbols (i.e., sorted in ascending order of thei
metric values). Unfortunately, the complexity of exhauesti
SE becomes unmanageable (especially for high-order modu-
lations), since the metrics of all the constellation syrsbiwve

to be repeatedly computed and sorted during the tree sdarch.
order to reduce the computational cost, the ideal SE orderin
can be approximated by exploiting the geometrical propsgrti
of the considered QAM constellation. Some examples are
the circular or column-wise zig-zag enumerations employed
in [2] and [3], respectively, as well as the sector-based ap-
proach proposed in [4]. The latter, so-called search sempen
determination (SSD), is a heuristic method which, combined
with an estimation of the metric values, reduces the compu-
tational effort enormously [4], [1]. A common disadvantage
of these geometry-based enumeration strategies is thgat the
neglect the influence of the priori information, consequently
constraining the gain of iterative detection-and-decgdins
shown e.g., in [4]. A pragmatic low-complexity solution to
this, firstly proposed in [5] and further analyzed in [6], siats

in iteratively reusing a list of candidate tree paths. Thase
ained by a soft-output detector, without re-runningttiee

_ '®search on every iteration. The gain provided by this apgroac
especially redgrdg phowever very limited and a high number of candidates has

to be collected in order to achieve an acceptable error-rate

performing and cost-effective MIMO detectors representsp%rformance [6]. In [4], [7], [8] and [1], several correativ

challenge, particularly concerning high-order systems. (i
> 4 x 4 MIMO configurations with> 64-QAM modulations)
in the context of iterative receivers. The turbo princiglevas

strategies have been proposed to enable the utilizatioheof t
SSD enumeration in iterative systems. While these solstion
improve the error-rate performance to some extent, thefitene

exploiting the full potential of MIMO communications by ,.q\ided by the turbo principle is still not fully exploiteth

exchangingsoft-information between the detector and th§g) o enumeration approaches based either on the channel
channel decoder. This enables enhancing the communitatiQ, ;e knowledger on thea priori information are proposed. A

reliability drastically or, alternatively,

the receiver’s overall complexity. Namely, the detectode

has to be able to generate soft output information, as wedt a

_ _ reducing theansmit pypriq enumeration strategy deriving from these is present
energy substantially while guaranteeing a maximum targgt [10].

error rate. However, this benefit comes at the cost of inargas

In this case, a sequence of symbols is estimated by
means of the SSD approach from [4] and the PAM-like enu-
meration algorithm from [3]. A second sequence is obtained

Sy computing, sorting, and optionally storing ttee priori

process the soft input data received from the channel decoglérmation corresponding to all the constellation synsbat

The presence of soft input information (known aspriori

information) introduces a shuffling effect on the tree nodg,

all tree layers. The effective enumeration sequence is then
termined during runtime by computing and comparing the

enumeration sequence [1]. This sequence indicates the ord@yics of the symbols from both sorted successions and se-
in which nodes should be examined, and has a strong effectgfying the one with the lowest value. Even though this metho

the complexity and even the detection accuracy of treeebeaépproaches the ideal SE ordering
algorithms [1]. Determining the ideal order in an accuratd a ’
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it entails a certain non-
negligible complexity resulting from the need to deterntine
enumeration sequences, in addition to the required compare
and sorting operations. To sum up, none of the state-o&the-
approaches provides an efficient and low-complexity sofuti
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to enumerate the symbols correctly in the presenc @fiori  sender

information. In contrast to this, the mechanism proposed | 8revDete Qouter f'”‘eg'fve' ! Constelation
this work exploits the properties of quadrature modulatior Heprer
to provide the optimum enumeration sequence, while saving B@”@Fﬂ

95% of the computational effort required by an exhaustive
SE search. In order to demonstrate the suitability of the pr
posed enumeration method, a low-complexity MIMO sphel

detector [11] has been considered and analyzed throudhisut-
work. A VLSI architecture concept is additionally presehte Receiver

and evaluated. Aft?r |n.tr0f:Iucmg the communlf:atlt_)ns W_SteFig. 1. Communications system model with BICM transmitted aterative
model and the basic principles of MIMO detection in sectiongceiver.

Il and 111, respectively, relevant node enumeration megsran

are described in section IV. In section VI, an overview of key  i=Nr =4
strategies to enable an efficient detector realizationasiged,
followed by a detailed description of the proposed arcliiex
(section VII). Lastly, the resulting circuit’s charactgics
are analyzed and compared to state-of-the-art realization
section VIII, before summarizing the contributions of this  ; _
work in section IX.
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Il. SYSTEM MODEL
In order to evaluate the performance of the proposed ddd- 2 Tree search example for a BPSK modulatidn= 1) and Ny =
. - . r = 4 antennas. Dashed lines represent pruned paths.
tection approach, a bit-interleaved coded modulation (BIC
transmission scheme [12] supporting iterative processing

the receiver [13], [14] is considered, as depicted in Fig. jnformation for each bit:,, ;. This can be accomplished by
The MIMO spatial-multiplexing system haSt = Nr = 4 calculating the so-called log-likelihood ratios (LLRS)
transmit/receive antennas. The coded and interleavednssre

c of bits to be transmitted are mapped onto a vest@r) of Lemaly) = In <P (Cmi= +1|}’)) )
complex constellation symbols from a QAM constellation " P(cm =—1ly)

set X with @ = 64 symbols (i.e.,L = 6 bits per symbol). . -
An uncorrelated, fast-, flat-fading Rayleigh channel mOdEE means of a tree search detection strategy. The main idea
i

is considered and assumed to be perfectly known at t_ehmd tree search approaches is to represent thg séall

e ; )
receiver. The channel is representedyc CVr*Nt with ely transmitted symbol vectors as a weighted tree stmact

. . ) . ... as exemplified in Figure 2. The number of levels of the tree
entries of a zero mean independent and identically digtbu .

(i.i.d.) gaussian random process of variance 1. An AWGR defined by the amount of MIMO layers or, equivalently,

vectorn € CVex1 comprised of zero-mean ii.d. gaussiar?f transmit antenna®/r (assuming spatial multiplexing with

random variables of variancaly/2 per real dimension is one transmitted symbol stream per antenna). Every tree laye

; i L(Nt—i) i i
added at the receiver. The received signas therefore given ¢ comprise2” " 7 nodes, ea_lch representing a constellation

. : . . symbolx € X. A set of @ child nodes descend from each
by y = Hx + n. The receiver is mainly comprised by

the complex-valued tuple-search sphere detection ahyorit parentnode into the next layet E.l)' The tree root is defined

. : ) ) . ) . by the topmost layeri(= Nt), while theleaf nodes compose
[11] described in section lll, in conjunction with a turbo ; :

the, lowest layer i = 0). Each of the tregaths(i.e., tree
channel decoder. The detector and the decoder are coupled . .
X . . edges connecting parent and child nodes from the root to

through the corresponding (de-) interleaving blocks ang m% leaf) is weighted by a metria. Instead of searching the
generate and exchange soft informatid®(t/Pee, 1.Det/Pe) 9 y ' 9

2. ) . . : . 2. complete se), tree-search detectors only consider a subset
in iterative fashion, in order to improve the communicasion P y

. : L C V of candidates. By additionally applying thmax-log
error-rate performance cooperatively [13]. In the follogij the L . . .
notation+Pet/Dec will be dropped for the sake of simplicity. approximation [15], thenaximum a posteriol(MAP) solution

A simulation setup equivalent to the one applied in e.g., [E%c (1) (ie., the exhaustive-search solution) is approzéda

) . . . i ] as (2). For the given received MIMO vectgr and the
\[AE,S(])rlESconsmertho ease comparing the results with previou stimated symbol vectak(c) (represented by the vector of

bits ¢), the required metric values take then the form in (3).
IIl. TUPLE-SEARCH SPHEREDETECTION

. . . L (Cm,l|y> ~
The task of a MIMO detector is the determination of the 1 ) 1 )
most likely sent vector of bits, as well as of reliability *ﬁoxeﬁlffnizﬂ{)\}Jr Foxeqlgm;:q{)\}' )
1The turbo channel decoder employs a BCJR (Bahl, Cocke,eketimd
Raviv) algorithm with { &, 5) convolutional codes and 8 internal iterations. ., No Nr—1L-1
A coding rateR. = 1/2 is applied. An information block size of 9216 bits \ (y, ¢, L,) = |ly — Hx(c)|| — —= Z Z ¢ijLacij), (3)
(including tail bits), Gray mapping and random interleavare considered. 2 i i

i=0 ;=0
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The vectorL, contains the soft-informatioh, (¢; ;) generated L - Ny bits ¢,,, ;. Additionally applied mechanisms for further
by the channel decoder (i.e., thee priori information) for reduction of complexity are the sorted QR decomposition
each bite; ; of vector c. To map all transmit symbols to (SQRD) [16], the MMSE channel matrix extension [23] and
a tree structure, the channel matrix must be decomposedhe radius and LLRs clipping [24].

a way that a successive dependency among antennas can be

established. This transforme_ltion can be performed by means IV. NODE ENUMERATION STRATEGIES

of e.g., the QR decomposition (QRD) of the channel matrix ) )

H = QR, whereQ is unitary andR an upper triangular The complexity of the_ tree search process is strongly
matrix with elements-; ; [16]. The triangular structure dR mfluence@ by the order in which the constellat|on_ symbol;
allows an ordered layer-wise exploration of the tree from tfieéscending from a parent node are explored. To avoid spgndin
root to the leaves level. By modifying the received symbofPmputational effort on subtrees which will be eventually
asy’ = QUy, the Euclidean distancdy — Hx(c)||® is pruned by the rad|u§ constraint, tree paths Wh_lch are ad-
reformulated as|y’ — Rx(c)||* and the metrics\ in (3) vantageous fc_)r (2) (i.e., presenting small metrics) should
can be recursively calculated by accumulating each layeP§ explored firstly. Consequently, tree nodes are preferabl

contribution as examined in ascending of their partial metrics. To accostpli
1 this, numerous enumeration methods have been proposed (e.g
_ 1 .2 No 9], [10], [3], [4]) which mainly differ in their complexit
i =X+ |y —radi|T — = Y cijLaleiy), y prexiy
—_ N 2 4 d 7 and accuracy. None of these state-of-the-art approactwes pr
he - j=0 (4) . - . .
alreag"yeg's‘;ir;gg g 'S"ytﬁ{;%ﬁence reduced vides, however, an efficient and low-complexity solution to
symbols ) Aj“.(f"') ] enumerate the symbols correctly in the presenca gfiori
o (a-priori information) information. In contrast to this, the proposed smart-agrti
" p - . enumeration with quadrature metric computation (SSE-QMC
Y, =Y; — Z riida. (5) . . .
v L = A strategy [25] guarantees perfect node ordering while kegpi
=1

an acceptably low complexity, as shown in section VIII. le th

In (4), the partial metric \; (¢ > 0) represents the influencefollowing, the exact exhaustive Schnorr-Euchner commrtat

of the upper layers, whereas, = A (y,c,L,) denotes the approach, the geometry-based approximation of [4] and the
total path metric, i.e., the metric corresponding to a c@t®l proposed SSE-QMC mechanism are presented.

estimated MIMO symbol vectak(c). The interference among

layers is successively suppressed by applying (5). Finding _ _

the MAP solution (i.e., the so-called detectitrypothesis - E*act Exhaustive Enumeration

is not sufficient to generate soft information, since thigglo The Schnorr-Euchner (SE) enumeration [26] is a widely
not necessarily minimize the two terms in (2). Instead, dmown strategy to determine the ideal node ordering,
exhaustive search for all the- Nr required minima (the so- consisting in a sequence of constellation symbols
called counter-hypothesgsust be performed as well. Sincelz?, z}, ... ,xEQ’l)] sorted in ascending order of their

an exhaustive search of all minima entails an impracticalpartial metrics Li(z?) < N(zh) < ... < )\,L.(xl@*)))_ The

high complexity [17], the search space is reduced by apglyidgomplexity of the (exhaustively applied) SE method grows

a sphere detection approach. Sphere detectors introducexgonentially, since the partial metrics of )l constellation
certain constrainf? (known asradius) to limit the maximum symbols have to be repeatedly computed and sorted for each
value of the nodes’ metrics. All tree nodes whose partiphrent node in the tree. This represents an enormous waste of
metrics exceed the defined radius valdg ¢ R) are excluded computational resources, since symbols whose metricateiol
from the search, as exemplified in Figure 2 by dashed lin@se radius constraint\;(z¥) > R) will not be explored and,
These excluded nodes, as well as the subtrees descendtgsequently, enumerating them is unnecessary.

from them (which are also excluded from the search) are said

to be pruned From the large variety of existing tree search i i

detection strategies, the tuple search sphere detectdd)(TS: APProximated Enumeration

proposed in [11] has demonstrated to outperform the error-Disregarding the contribution of tha priori information
rate-complexity trade-off of existing sphere detectioatstgies to the metrics, the node ordering is uniquely depending on
(such as single tree search (STS) [18], list sphere detectibie Euclidean distances between the (normalized) intemtes-
(LSD) [19] or K-best detection [20]), while representing aeduced received signal!” = y/'/r; and the constellation
promising approach towards an efficient VLSI realizatioaymbols:
[21], [22]. The TSD strategy keeps a sorted list (aple) . _
T = {)\() (Cl) , Ao (CQ) sy Ao (CTfl)} Containiﬂg the best (Af)Q = |y£” - xif 2’ with k = {0’ T Q - 1} (7)

T candidate path metrick (c;). The sphere radius is definedryg onymeration can be directly visualized on the congiiia

as the maximum metric in the tuple: plane, where geometrical properties can be exploited ierord
R =max{\(c:)} = Ao (cr-1). (6) to approximate the ideal SE ordering with a considerably
ct low computational cost. An example of this is the so-called
For the LLR computation, an additional list is employedearch sequence determination (SSD) method proposed, in [4]
to store the best candidate metrics found for each of thdich divides the constellation space into geometricaisiaac
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Fig. 3. Section of a 64-QAM constellation. The constella8ospace denoted
by a grey-shaded area is partitioned into 5 decision regfonghe search

C. Smart-Sorting Enumeration with Quadrature Metric Com-
putation (SSE-QMC)

Existing tree search detection algorithms generally campu
(4) repeatedly, disregarding the fact that the alreadyrdete
mined quadrature components can be reused for other symbols
with the same real or imaginary parts. The strategies pexpos
in this work, in contrast, exploit the latter property bytiaily
determining and sorting the metrics’ quadrature contiing,
as described in the following. The proposed smart-sorting
enumeration with quadrature metric computation (SSE-QMC)
simplifies the metric computation significantly and saves an
enormous amount of sorting operations, as demonstrated at
the end of this section. The SSE-QMC mechanism relies on

sequence determination (SSD) approach. the foIIowing observations:

regions (as illustrated in Figure 3). The node ordering is de 1) Quadrature metric computation (QMC):

termined by a predefined node succession, which is assdciate
to the decision region wherng” is found. The computational
complexity can be further reduced by replacing the metric
calculation in (4) by a metric estimation (ME) approach
based on this sector-aided strategy. The distaddebetween

the constellation symbols and the (normalized) interfeeen
reduced received signal can be replaced by predefined ge-
ometrical distancesﬁf' [27] [21] between the constellation
symbols and fixed reference points! (such as the geometric
centers of the defined decision regions):

~ 112
rn(AF)? =yl — &l

ol =2l @

~ 2
~ e

It is additionally possible to precalculate?, as well as
r2(AF)2 in order to simplify the complex-value products in
(4) to a single real-value multiplicatiéror even to eliminate
these operations completely.

The reduced computational complexity of the SSD and
ME mechanisms make them seemingly attractive for hard-
ware implementation, but these strategies also presen¢ som
drawbacks. Firstly, in iterative scenarios the metric galdo
not depend only on the Euclidean distances, but also on the
contribution of thea priori information\,(z;). Consequently,

a sorted sequence of symbols can not be predicted by solely
examining A¥. Euclidean-distance-based enumeration strate-
gies are thus suboptimal and may lead to considerable error-

« For the considered QAM modulation, both the Eu-
clidean distances and tteepriori contributions\,
in (4) can be decomposed in two additive quadrature
components:

Ay (i) = R{rZ (AP (2:))°} + NoA (1)

Xy (@) = I{rg, (AP (2:))*} + NoAy ()

9)
with
L/2-1 L-1
M) = > |Lalei)l, (@) = > [Laleiy)l-
j=0 j=L/2
with ¢; j#sign(La(ci,;)) with ¢; j#sign(La(ci,5))
. Th% Iajyer partial metric of any constellation symbol
xEk *#") can be hence determined by simply adding

the corresponding quadrature components:
AETEDY R (T s

By these means, the matrix of metrics illustrated
by the example in Figure 4 can be composed (each
matrix element corresponds to a symbol of a 16-
QAM constellation). It should be noticed that, in
order to obtain any of thé&) partial metric values,
only /Q partial metric components have to be
computed in each dimension.

rate performance degradation, as shown in [1]. To cope with2) Smart-sorting enumeration (SSE): By sorting the

this disadvantage, thein-search(MS) andadaptive hypoth-

esis (AH) approaches proposed in [4] and [1], respectively,
correct the hypothesis by taking the priori contribution

into account. These techniques compensate the performance
loss to some extent, whereas the detection accuracy is still

metric quadrature components in ascending order, the
exact SE sequence can be determigeatually. Con-
sequently, the tree nodes can be enumerated as they are
required by the search process, instead of all at once (as
required by the conventional SE enumeration approach).

suboptimal [1]. An additional disadvantage is represetgd The SSE-QMC procedure enumerates the tree nodes on the
the loss of accuracy caused by the estimation of the metribasis of these observations, by performing the following
which leads to a degradation of the error-rate performaneperations (exemplified in Figure 4):

[21] Addltlona”y, the memory requirement increases sinc 1) Compute the \/Q quadrature Components of the

the precomputed distancéA’ )2 (or optionally the products
rZ(A¥)?) have to be stored.

partial metrics in each dimension X(}, and A7),
. i) (2)
according to (9).

2) Sort the quadrature components in ascending order

2For a conveniently chosen QRB;; only contains positive real values.

as depicted in Figure 4(a).
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@ 0 1 2 3 KR Stack @ 0 1 2 3 KR Stack

A R5005 043 126 238 A ER g ARL005 043 126 238 A ER g
0 0.06 0.11 — 0[011 |0 O 0 0.06 0.11 0.49 1.31 2.44 0253 |2 2
1 0.42 { 1 1 042 0.48 0.85 1.68 2.80 112791 3
2 1.27 2 2 1.27 1.32 1.70 2.53 — 2 2.8 3 1
3 236 3 3 236 | 242 279 { 3

K (a) After enumerating the first symbol. Kt (b) After enumerating the first 11 symbols.

Fig. 4. Sample matrix of metrics and stack content for the -8B approach, after sorting the metrics’ quadrature camepts (each of the matrix elements
corresponds to one symbol of a 16-QAM constellation). Gilegeed cells correspond to symbols which have been alreadyierated (i.e., examined by the
tree search).

This work

3) Select the global minimum(i.e., the element at the top- ‘ MC (4) SE [2€6] QMC  SSE
left corner of the metrics matrix) as the first symbol in add 192 - 80
the enumeration sequence. multiply 128 4006 16 8
. . compare - -
4) E_xpand two new candidates of the metrics ma- accumulate ) 512 ) 16
trix (one along each quadrature component) depart- TABLE |
H H (km,kj) COMPARISON OF THE COMPUTATIONAL COMPLEXITY(IN NUMBER OF
ing from the previously selected S%qudji ’ OPERATIONS OF THE SCHNORR-EUCHNER ENUMERATION(SE)WITH
ie., compute the partial metrics; (j(k Lk )) and STANDARD METRIC COMPUTATION(MC) AND SMART-SORTING
’ ENUMERATION (SSE)WITH QUADRATURE METRIC COMPUTATION

A @gk”vk”” according to (10). The metric computa- (QMC).

tion operation performed here consists in simply adding

the already calculated quadrature components. In ordi@rations is considered. The performance of the unconsiia
to avoid generating new metric values unnecessarily (i.single tree search (STS) strategy [18] with SE enumerason i
in case that better ones have been already computedheluded for reference, representing the optimal detactio-
controlled-expansiomechanism is applied. curacy boundary (i.e., the performance of exhaustiex-log-

5) Add the newly determined enumeration candidates APP detection [28]). In the considered iterative scenario, the
to the stack and sort themin ascending order of the SSD enumeration sequence is expected to diverge signlficant
partial metrics, as illustrated in Figure 4(b). from the exact SE ordering, resulting in a considerablererro

6) Select the next symbol to be explored within the tree rate performance loss. This effect is indeed exhibited gufé
search (which is always contained in the first positiorb(a), where the error rate of the TSD-SSD algorithm shows
of the stack), and remove it from the stack. a clearly appreciable error floor. The corrections perfatme

7) Repeat steps 4 to 6in order to enumerate furtherby the Adaptive HypothesiAH) [4] and the Min-Search
tree nodes, if required. The enumeration process finisH&4S) [1] approach offer a noticeable enhancement of the
whenever all constellation symbols have been exploretror-rate performance, which is nonetheless still subuit
or the corresponding subtree is pruned (e.g., by tAde SSE-QMC strategy, in contrast, achieves the same error-
radius constraint). rate performance than the exact SE enumeration, but also a

Thecontrolled-expansion mechanism mentioned in step 4 presimilar node count, as shown in Figure 5(b). The latter can be
vents unnecessary metric computations, hence avoiding stgasily mitigated by simply applying the internal radiuppiing
overflows. Specifically, a new metric component is computégechanism of [6]. By these means, the average number of
only if all the previously determined metrics within the samnodes accumulated over the 4 iterations is reduce@y
column/row have been already examined. In order to determi@t BER. = 10~°) with regard to the SE enumeration. As

if a better metric has been already computed, no metfcresult, the number of tree nodes explored by the proposed
comparison is required. Due to the previous sorting of thHeSD-SSE-QMC approach (which provides the optimal node
metric quadrature components in ascending order, exaginRidering) is comparable to the one of the TSD-SSD-ME
the element’s indexes within the matrik®, k7) is sufficient. strategy (which just approximates the ideal node sequence)
By means of this controlled-expansion strategy, the stak sThe main advantage of the proposed SSE-QMC enumeration
is kept reasonably small and overflow situations are prexentstrategy resides, however, in the reduction of the comjoualt

It should be noticed that only the stack content needs to B@mplexityper node extension, rather than the in the reduction
stored, whereas the metrics matrix is employed here only fef the node count. Table | compares the computation count of

illustrative purposes. the SSE-QMC approach against the one of exhaustive Schnorr-
Euchner enumeration with state-of-the-art metric comjmta
V. PERFORMANCEANALYSIS (4). To determine the number of compare and accumulate

The overall complexity of a tree search algorithm can baperations, the fast sorter architecture described iniosect
assessed from two different perspectives, namely the complil has been assumed in both cases. The novel SSE-QMC
tational complexity of each node extension (i.e., how cof@apu mechanism achieves a drastic reduction of the computdtiona
tionally costly is to extend a single parent node of the traedl effort, which causes a decrement &f% in the complexity
the node count (i.e., the number of required parent nodemextef the metric computation (on average), and a reduction of
sions). The latter is depicted in Figure 5, along with the@err 97% in the complexity of the node enumeration process. To
rate performance. A scenario wilt = 4 detection-decoding further reduce the complexity, the quadrature componeits o
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(a) BER performance. (b) Average node count, accumulated duriitg= 4 detection processes.

Fig. 5. Performance comparison of different detectiontagias in an iterative receiver withé = 4 turbo iterations 4 x 4 MIMO, 64-QAM, T = 16).

the a priori information A2 and A\J) can be pre-computed of the QMC or ME approach, within the respective blot®s
and stored (since they remain constant during the detectiamd ®. Analogously, the corresponding reduced-interference
process). Throughout the next sections, the complexityef treceived signalsy{”’) are calculated according to (5) in blocks
proposed VLSI implementation will be evaluated. @ and®. The previously determined partial metrig(z?) is
subsequently considered in order to update the radius (@ple
V. TOWARDS AN EFFICIENT VLSI| | MPLEMENTATION within block@. This operation is performed at each tree layer

The design’s aspects contributing to restrict the incurrc{ﬂr the sake of regularization, whereas it only takes eféict

hardware complexity as well as to increase the processitﬁ’é'srZ = 0. The dne>_<tth_stet|rrJ] con3|tst|s n Sg:gg)ngl the tre(ihlayer
capacity are described in the following. 0°be processed within the next loop ( - In case he

search proceeds on the same layer or traces back to upper
_ o tree layers, a new sibling node needs to be enumerated, its
A. Algorithm Partitioning corresponding partial metric has to be determined, and the
The sphere detection process can be decomposed, as dnigpr-antenna interference has to be computed. It should be
inally proposed in [29], [27], into several functional bksc noticed that these operations (performed by bldgksD and
(@...@M) comprising the regularized data flow diagram illus), respectively), are rather unconditionally executed ideor
trated in Figure 6. The depicted operatidnep is executed to keep the regularized control flow. Likewise, the operaio
iteratively, examining one tree node in each iterationg\tbat involved in the soft-output generation, which are actually
the data path has been explicitly divided into two branchegquired only at layer = 0, are nevertheless continuously
The path comprised by light-grey shaded blocks enclosesecuted regardless of the tree layer. In particular, the bi
the operations required by the tree node extension procegscific metrics required for the LLR values are determined
whereas the dark-grey shaded blocks contain the operatitysblock (D, and the stored subset of candidates is thereafter
required to generate the soft-output information. The tregpdated by blockD. Finally, the LLR values are computed
search procedure has been regularized [29], [27] in orderitoblock @. As shown in Figure 6, the end-condition (which
simplify the control flow and ease parallelization (e.gaghe- terminates the execution as soon as the root ricdeéVr — 1
instruction multiple-data -SIMD). The regularization cept is reached) is the only conditional operation required.
consists in executing the same computation pattern in each
iteration, regardless of the value of runtime data (such@s e
the current tree layer). For this purpose, "dummy” operetio
are introduced and multiplexing logic is inferred in order t The designs proposed in section VIl are accelerated
select only valid data for further processing. by means of application-specific instruction-set processo
As shown in Figure 6, the first and the second tree nodedSIPs). The data path, depicted in Figure 8, comprises the
(=9, 1) to be explored are determined by blodBsand ®), MIMO detection module, an address generation unit and
respectively, according to the selected enumerationegfyat Several data memories, particularly:
(SSD or SSE). Note that in case the SSE approach is applieds Input vector memory (VMEMI): this memory contains
the metric's quadrature components have to be previously the vectors ofNt received signals.
computed, as denoted by blo@. In case the SSD approach « L. vector memory (VLAMEM): it stores the vectors
is applied, the corresponding search sequence has to kre dete of Np - L a-priori values L, (¢,,,;), generated by the
mined instead (block)). The partial metrics of the two first channel decoder in order to enable the application of the
nodes §;(2?), \;(x})) are subsequently computed, by means  turbo principle.

B. Memory Access
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Fig. 6. TSD regularized flow diagram.
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Fig. 7. TSD's task scheduling and pipelining schemes.

Output vector memory (VMEMO): the vectors of LLR have been investigated. A time budget (in clock cycles) has
valuesL (¢, ,|y) generated by the MIMO detector arebeen defined for each functional block, based on the number
contained in this memory. of sequential add-equivalénbperations (assuming a suffi-
Scalar memory (SMEM): this memory contains con- cient degree of internal bit-level paralleli§n The overall
figuration data (such a¥vr, @ and T) and channel latency is reduced by partially overlapping the executién o
information, including the channel matriR and the the defined functional blocks (i.e., through instructiemdl
precomputed producl@%(Af')2 (8) (required by the ME parallelism) [30], [22]. The proposed scheduling scheme is
approach). A cache which holds a partial copy of thdlustrated in Figure 7(a), presenting an overall delay 6f 1
SMEM content was additionally introduced in [30]. Thisclock cycles. The data generated by blod®s @ and ®
storage element allows faster data access and saves castty not required by the immediately subsequent detection
(in terms of latency) memory access operations. It shoulabp(s) [30] and, consequently, a new iteration can be érigd

be emphasized that no precomputed data are requimery 5 clock cycles instead. In the case of the TSD-SSE-
by the QMC strategy, in which case the configuratio@MC detection approach, the node enumeration as well as
information can be relocated into VMEMI, while SMEMthe metric computation modules have been modified in order
and the cache (256 bytes edcrhcan be completely to implement the SSE and QMC strategies, respectively. The
eliminated from the design. different computational effort and data dependencies e$e¢h

C. Scheduling and Parallelization 4The specific definition of add-equivalent operation as wesllaadetailed

In [30] the computational complexity and the latency of thg

reakdown of the blocks’ latencies can be found in [30]. Tateet are also
epicted in Figure 7. Each add-equivalent computationsarasd to consume

operations comprising the TSD-SSD-ME detection algorithghe clock cycle.

5Bit-level parallelism of the proposed architecture is dega in section

3The stored information is represented with 8-bit precigia@], [1]. VII.
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blocks with respect to the analogous modules in the TSD- . PR o B —— M
SSD-ME design (described in detail in section VII) require ! v 2 v v
a modified task scheduling scheme (as depicted in Figure | SYEM] I s 5
7(b)). Particularly, the computation of the quadraturetiphr Cadar. ] & = =
metrics is firstly performed in block), with a time budget Address | | Reg. = § &
of 2 clock cycles. The first and second enumerated nodes, as gen. file £
well as their corresponding partial metrics, are subsetfyen i l l T §
determined in block®, ®,© and®, with a time budget of 5
1 clock cycle. In parallel to this, successive sibling nodes MIMO (Tuple-Search) Detection | 3
analogously enumeratgt, (D). The operations to determine q ©)

the radius and the tree lay¢®,®) are scheduled exactly ' _
as in the case of the TSD-SSD-ME approach, whereas frie: 8. Block diagram of the MIMO detector ASIP architecture
gielc?JCtéo)na?]fdtgecllgtcel:fgglréc;a@r’eq%l;.ctllr? r(;:Jdn;trst : ?a?rimle soon as another one is concluded, without stalling the ipipel
proposed 5-cycle architecture, the time budget for thegs unexecunon.
has been reduced to 2 clock cycles, as illustrated in Figure
7(b). As later discussed in section VIII, these modules do no ~ VIlI. ARCHITECTURES FORMIMO D ETECTION
lie within the critical path and, consequently, no decayh&f t The newly proposed SSE-QMC detector has been shown
maximum achievable clock frequency is expected. Lastl, tho be a promising solution to cope with the disadvantages of
units computing the bit-specific metrics and LLRD, @, @) the SSD-ME approach. However, its efficiency has not yet
keep the same timing structure as in the previous case. Nbt#en assessed from the implementation point of view. Fer thi
that the newly proposed TSD-SSE-QMC approach presentgeason, both TSD-SSD-ME and TSD-SSE-QMC architectures
fairly more compact and structured scheduling scheme thaill be analyzed and comparéih the following. Both MIMO
the preceding TSD-SSD-ME design, which allows groupingetector realizations have been optimized for>a44MIMO
the execution (and thereby the hardware resources) ofasimigystem employing a 64-QAM modulation. A dedicated func-
functional blocks easily. tional unit (FU) has been defined for each of the task blocks
Pipeline-interleaving [31] has been applied to the profos@® — M shown in Figure 6, with the exception @ and©)
TSD detector in order to enhance the design’s throughpuit [30which are merged together. In the following, the architeet
Similarly as done in e.g., [32] and [33], several independeof those units involved in the node enumeration and the
data paths are pipelined and executed in interleaved fashimetric determination tasks will be described and illustdat
The previously described task blocks have been clustergighlighting in each case the critical path by means of a red
according to their execution times as illustrated in Figures arrow. Remaining units of the MIMO detector are common to
7(a) and 7(b). Resulting from this, 5 sets of parallel operst both designs and are thus omitted here (a complete descripti
are composed, each defining a pipeline stage. On this basim be found in [30], [22] and [1]).
the throughput can be easily enhanced by simply interleav-
ing thg pipelined egecution of the _5 task-set; for differelzgg_ Node Enumeration Unit (NEU)
detection paths. This procedure is illustrated in Figure),7( i
where D € {Dg...D;‘} denotes thep-th task-set of the The NEU block enqmerates the .nodes to be examined
g-th detection path. The resource utilization is maximizegtring the tree search in the appropriate order. In the cse o
when the number of interleaved data paths equals the numb SSD approach, the pre-computed enumeration sequences
of available pipeline stage® = 5, achieving an average &€ stored in a smallx 32 bytes) look-up-table (LUT).
The first nodezi*' is directly obtained by rounding the

throughputr: ; - - )
normalized reduced-interference received siggél to the
- LNt P 7 . LNy 7 lops] (11) closest constellation symbol, whereas subsequent syrabels
E[n)P + P — 17 E[n] ’ LK ' directly selected from one of the enumeration series coathi

L .. in the LUT, as illustrated in Figure 9(a). The appropriate@&o
Id/eally, the clﬁ]cz;l?g;igtsjebncg fraecigrr]?)? nt;ya;givﬁ;]pre;?e:;:gcusequence is identified by determining which of the quantized
tjvﬁélrio?-f@g'ned architeg;dir(a I~ p ) AssEmin constellation regions in Figure 3 contains the receivedaig
that a ngvlvpdtlatection starts asfggc{mNas ;r{gtLhI;r. has finisr?ed Igb For this purpose, simple comparisons of the real and the
i i r o M _ ref H
processing element (PE) is idle after filling in the pipedieg T 29nary components ' = y™ — 27 are required, as

described in detail in [4]. In the case of the SSE approad$, th

to the sustained throughput expression on the right-hatel SUnit implements the node enumeration procedure described i

of equation (11). The memory address computation and access
operations are embedded in the pipeline structure, in learal 7an architecture concept for the soft-output TSD-SSD-MErapph was

to the detection algorithm’s computations. By these meatriisstly presented in [30], [22] and brought to silicon in [34n extended
the execution of a new detection path can be triggered 4g§ign was proposed in [1], adapted to support processirgpufori infor-
mation. In this regard, the adaptive hypothesis strategypgsed in [1] was
incorporated in order to enable achieving an acceptabte-eate performance
6The actual speedup factor is constrained by the physicéthlions of the in iterative detectionsdecoding receivers. On-chip measurements of the
underlying technology. corresponding silicon realization can be found in [35].
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section IV-C (steps 3 to 6). The first node in the enumeratiamclude the contribution of the priori information, which
sequence is directly obtained (step 3) after sorting theioset has to be additionally calculated. The SSE-QMC approach,
guadrature components (previously determined by the eeton the contrary, simplifies the computation of (4) to two
computation unit). In order to enumerate further nodegssteaddition operations (to add the quadrature componentsrend t
4 to 6 are executed. As illustrated in Figure 9(b), only twmetric of the upper tree layer, respectively), as illugidain
parallel adders are required to compute the partial layericse Figure 9(b). In contrast to the TSD-SSD approach afpeiori

of successive nodes. These values are added to the staoktribution is not computed (since it is already contained
which is subsequently sorted by means of the fast sorteuitircin the metric quadrature components provided by the MCU),
described below. The next sibling symbol (which occupieand less memory is required (since no pre-computed distance
the first position in the stack after the sorting process) i (A¥)? are stored).

then selected and removed from the stack. Two additional

parallel adders are required to add the metrics accumulaigd Fast Sorter Circuit

throughout the upper tree layers.;. The complexity of

this unit is thus comparable to the one of the SSD, Wh;:g?The fast sorter circuit depicted in Figure 11 sorts a vector

N positive valuesz = [z, 21,...,2n-1] In @ highly-
dfrallel manner. For this purpose, all tiié values in the
considered set are compared against each other by a bank
of N? parallel comparators. The output of this operation is
the N x N matrix of binary flags depicted in Figure 11.
B. Metric Computation Unit (MCU) Each binary valué, ,,, indicates if the conditiorz, > z,

As described in section 1V, the ME approach pre-computés met ¢,, ,, = 1) or not ¢, ,, = 0). The number of flags
the products? (A¥)2 and eventually stores them in a caché, » = 1 within column m represents hence the position
(65 bytes). Consequently, (4) is simplified to a single additiofor inde® that elementz,, should occupy within the sorted
operation, as illustrated in Figure 10(a). The TSD-SSE-QMectorz’. In order to generate this sorting index, the binary
design, in contrast, performs an exact computation of twalues within each column are added together by a bank of
metrics according to (9) and (10), instead of the estimati%
in (8). The metric computation introduces two multipliers =1
for each of the quadrature components (namely the Squa@dallel multiplexers are employed to relocate the element
operation|y/” — ;|2 and the subsequent multiplication withof z within the output vector’ according to the computed
r;). As illustrated in Figure 10(b), the SSE-QMC approactdexes. This highly-parallel circuit enables a very fastiag
proposed in section IV-C requires a total 2f/Q) multipliers Operation at the cost of having a complexity which scales
per dimension, thus increasing the computational ComMeXguadratically withN. This is obviously disadvantageous if a
considerably with respect to the SSD-ME approach. Furthéfrge number of elements have to be sorted, as in the case of
more, the parallelism of the block which computesahgriori  the exhaustive Schnorr-Euchner enumeratidit & Q?) for
contribution increases tg/Q parallel instances per dimensionhigh-order modulations (e.g., 64-QAM). In contrast to this
The quadrature metric components are sorted by employih§ number of values to be sorted by the presented SSE-QMC
the fast sorter circuit described below, which also entailsStrategy is reduced to only}® = (v/Q)* = Q elements, as
complexity increase with respect to the SSD-ME approac#iscussed in section IV-C. This fact makes the proposethgort
The memory requirement is reduced, on the contrary, since #Ecuit affordable even for high-order modulations.
pre-computed Euclidean distances need to be stored. Itdshou
be noticed that this unit (corresponding to task blékin VIII. | MPLEMENTATION RESULTS
Figure 6) computes only the metrics’ quadrature componentsin order to assess the hardware cost of the proposed
whereas the final partial metric values (including the upp& SO TSD-SSE-QMC architecture, the most relevant design’s
layer's metric) are subsequently obtained in the NEU, a®aracteristics (area, delay, throughput and energy) hll

requires a similar amount of adders and comparators.
SSD requires, in addition, a LUT to store the pre-defin
enumeration sequences.

N
accumulators_ by, m,vm = {1,2,...,N}. Lastly, N

previously described. evaluated in the following. Additionally, a comparison et
the SISO TSD-SSD-ME design of [1] will be provided. For
C. Soft-Output Computation Unit (SOCU) this purpose, the previously described SSD-ME and SSE-

QMC modules have been implemented and synthesized using

This unit is involved in the generation of soft-informatio . ) . :
(i.e., LLR values) for the channel decoder. In particular, ninrl]\(/lj?tlicI’(r)]v!—power 65nm libraries under typical case operating

determines thel, most favorable counter-hypotheses amon
all candidate leaf symbols, enumerating them according to

predefined leaf-specific sequences [11]. For this purpose, - Aréa

stances of the MCU and parts of the NEU (Figures 10(a) andThe area (in GEs) required by the complete SSD-ME and
9, respectively) are utilized. The SSD-ME approach esesatSSE-QMC modules is depicted in Figure 12. Note that the
the metric values of thé, candidates, as described in sectioarea corresponding to the SOCU block accounts only for the
VII-B. For this purpose32 bytes are required to store the prelogic required by the metrics’ computation, whereas retngin
computed products?, (A¥)? for the leaf-specific sequences. ltoperations do not differ between the compared approaches
should be emphasized that these pre-computed values doarat are consequently omitted. As shown by these results, the
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(b) SSE-QMC MCU.

size of the SSE-QMC’s MCU has grown significantly with
respect to that of the SSD-ME approach, as a consequence
of the complex-valued multiplications and the considerabl
increased level of parallelism. The area increase exlilite

the NEU due to the introduction of the stack maintenance and
sorting operations is less pronounced but still considerats
previously presumed, the area of the SOCU has been in con-
trast reduced, since the LUT storing the Euclidean distance
has been eliminated and tteepriori information processing

is entirely accomplished within the MCU. As previously dis-
cussed, the SMEM, its associated cache, and the corresgpndi
memory access control logic is not required by the SSE-QMC
approach, making the area of these components (enclosed in
the categoryOther in Figure 12) vanish. To sum up, the
proposed SSE-QMC strategy requires nearly 4 and 8 times
larger NEU and MCU modules, respectively, but a slightly
smaller SOCU block. Taking the additional memory saving
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socu*
— Fig. 13. Delay of selected TSD-SSD-ME and TSD-SSE-QMC mesjul
Other synthesized for the maximum achievable frequency in eash eader typical-

case operating conditions.

Fig. 12. Area comparison of the SSD-ME and SSE-QMC modulge-(s . -
thesized under typical case operating conditiong.at = 450MHz). *The module is not expected to decay below the original frequency

area of the SOCU block corresponds to the logic requirecuiskaly for the ~Of the TSD-SSD-ME designf{};’* = 454MHz) [1].
computation (estimation) of the Euclidean distances.

into account, the area balance corresponding to the coenplét Throughput and Energy
SSE-QMC block exhibits an overaD% increase with regard

. The normalized throughput and energy-per-bit correspond-
to the SSD-ME_moduIe. It should be hoyvever_notlced that trﬁqg to the TSD-SSD-ME and TSD-SSE-QMC strategies are
node enumeration and metric computation units represest |

) o ﬁepicted in Figure 14(a) for different values df, in a
than 1/4 of the complete TSD design. A rough estimation _iterative signal-processing scenario. The non-nbreth

(Atotal — Atotal —A + A — X . .
TSD—SSE-QMC TSD-SSD-MB | FTSSDoME SSE-QMO values are included for reference in Table 14(b). As evinced
184kGE = 0.26mm?2, with Afotal = 165kGE [1])

ere, the higher accuracy of the SSE-QMC approach allows
ducing the value of" with respect to the SSD-ME strat-
Sy. This benefit becomes especially noteworthy in the low
SNR regime. At e.g.E,/No = 13.4dB, the TSD-SSD-ME
approach requires a search tuple of size= 64 in order to
B. Delay meet the target error-ratBER = 10~°), whereas a tuple size

In comparison to the estimation of the metrics, the metric = 8 is sufficient in the case of the proposed TSD-SSE-QMC
computation causes a considerable increase of the critisatategy. This allows achievingd4 times higher throughput
path delay. In order to avoid this, the SSE-QMC block haghile requiring only1/4 of the energy-per-bit. In the high
been partitioned and pipelined according to the structuBNR regime §NR > 13.5dB), the benefit of the TSD-SSE-
presented in section VI-C. Each module has been individuaQMC approach is mainly restricted to the throughput gain
optimized during synthesis for its maximum clock frequency> 40% increase), since the energy dissipation is in both cases
The resulting critical path delays are illustrated in Feyurcomparably low. For a particular throughput value (i.er, fo
13. The delay of the interference-reduction unit (IRU) ithe sameT’), the proposed TSD-SSE-QMC detector presents
additionally depicted, since it is affected by the redefimit a performance gain of approximatelyldB with regard to the
of the pipelining structure (section VI-C). In particuldhe TSD-SSD-ME detection strategy.
delay obtained by applying different pipelining depfAgwith
P =1{1,...,4}) is illustrated (denoted by dashed lines). As i
evinced here, even in the worst caBe— 1 (non-pipelined D- Comparison to the State-of-the-Art
circuit), the IRU delay is still slightly inferior than theedign’s The most relevant and representative MIMO detector real-
critical path delay, originally defined by the SOCU blockizations reported to date in literature are listed for corigoa
It can be hence concluded that the desigfi’g** will not in Table Il. The cost of input/output memories (i.e., ongchi
be affected by the proposed IRU’s retiming. As additionallgRAM macrocells) has been removed from the gate count.
depicted, the delay of the SOCU block stays constant, whergdl hardware characteristics are presented as reportdzbire:
the critical paths of the NEU and the MCU architecturespective works, whereas area-throughput and energy eitigie
have been extended. In particular, the NEU’s delay hasyednave been scaled to 65nm ahp = 1.2V according to the
doubled and the MCU's delay is approximatel§% higher. scaling factorsS = %h'andU = % (scaled
As a result, the MCU defines the critical path of the SSBErlues are enclosed within brackets). It should be empadsiz
QMC'’s design, which i94% higher than that of the SSD-ME that results from literature correspond to silicon implaiae
circuit (determined by the SOCU block). This increment cations, while the results reported in this work correspond to
nevertheless be considered as irrelevant, since the Ibpgtts pre-layout synthesis of the proposed VLSI design. The TSD-
delay (1.65ns) is still far from the target timing constraint SSE-QMC detector has been configured Witk= 8. The area-
(2.2ns). The SSE-QMC block has been in fact successfulhroughput and energy efficiency can be nevertheless inegrov
synthesized forf;** = 465MHz and, consequently, thewith respect to this configuration by reducing the valué/of
maximum clock frequency of the complete TSD-SSE-QM@s discussed in section VIII-C.

indicates that replacing the SSD-ME block by the SSE-QM
one within the TSD core would lead to an overall area increag
of only 12%.
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of SNR) with regard to sphere detectfoim the non-iterative

IX. CONCLUSION

The efficiency of the soft-input soft-output MIMO detector
proposed in this work has been shown to be superior than
that of several contending depth-first detector realizatio
while approaching the complexity of significantly less ac-
curate detection methods (such as K-Best and PIC detec-
tors). In contrast to the preceding TSD-SSD-ME approach
(which presents suboptimal performance and is practically
restricted to non-iterative receivers), the proposed =HB-
QMC strategy provides nearly optimal detection perfornganc
in iterative scenarios<{ 0.1dB loss with regardmax-log-
APP). Additionally, significant gains are provided, both in

terms of throughput (frord0% up to a factors) and energy

1 case.
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(a) Normalized average throughput and energy-per-bit.

T 1 2 4 8 16 32 64 256 512
T SNR(dB) 163 153 144 139 137 135 134 133 13!
& 7 (Mbps) 1360 855 538 333 209 130 88 53 40
$ EMit(ndb) 012 019 030 048 077 124 183 3.03 405
£ SNR(dB) 154 146 140 134 132 130 129 128 128
@ 7(Mbps) 1206 753 488 300 206 128 82 48 36 41]
@ Ehbit(nJb) 012 0.19 029 046 068 109 1.70 293 3.9

(b) Average throughput, energy-per-bit and SNR values.
Fig. 14. TSD’s average throughput and energy-per-bit.

(2]

The MIMO STS sphere detector (SD) proposed in [36]3]
represents the best-suited competitor for comparisomagai
the TSD-SSE-QMC realization, due to the high number of
algorithmic and implementation similarities. The muchhgég [4]
throughput and considerably reduced area of the TSD-SSE-
QMC design results in a clearly superior throughput-aréa ef 5
ciencyn, a, which excels that of the contending circuit by fac-
tor ~ 8, while doubling the energy efficienay;. As shown in
Table 11, the efficiency of the proposed TSD-SSE-QMC desigr[16
is additionally comparable or even slightly superior thaert of
other similar detectors from literature ([18], [37]). Inrtcast
to this, the pipelined hard-output K-Best detector of [38] 7l
outperforms the efficiency of the proposed detector, bus it i
not capable of incorporating and generating soft-inforomat ~ [8]
The best-first sphere detector (BeF-SD) proposed in [39], on
the other hand, doubles the gate count of the TSD-SSE-QMC
design. This system is dimensioned to support a higher MIM(®]
order § x 8), but can not process priori information. Lastly,
an MMSE parallel interference cancellation (PIC) detectio
approach is regarded for comparison. In contrast to the TSEY
SSD-ME circuit, the MMSE-PIC design integrates all the
circuitry required for channel pre-processing, includagU-
decomposition-based matrix inversion approach similahé&o
QR-decomposition required by the sphere detector. For #d
sake of a fair comparison, the corresponding pre-procgssin
area penalty (68.1kGE [28]) is added to the gate count of
the TSD-SSE-QMC design, yet totalling nearly 40% of the

8Measured aPER = 10%

efficiency (up to80% energy saving in the low SNR regime).
The proposed approach represents hence a viable solution
for low-complexity MIMO detection, which avoids sacrifign
gccuracy or performance.
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This work  Borlenghi Studer Studer Shabany Liao Studer
et al. [36] et al. [18] et al. [37] et al. [38] et al. [39] et akq]
2015 2012 2008 2012 2012 2010 201
Antennas 4 x4 <4x4 4 x4 <4x4 4x4 <8 X8 4 x4
Modulation 64-QAM < 64-QAM  16-QAM < 64-QAM  64-QAM < 64-QAM < 64-QAM
Detector DF-SD DF-SD DF-SD DF-SD BF-SD BeF-SD MMSE
(TSD) (STS) (STS) (STS) (K-Best) PIC
Input/Output SISO SISO SO SO HO SO SISO
Performance close to close to close to close to close to ttose
mIAPP mIAPP mIAPP mIAPP ML mIAPP subopt.
Tech. (nm) 65 65 250 (65) 130 (65) 130 (65) 130 (65) 90 (65)
Voo (V) 1.2 1.2 - - 1.2 1.3 (1.2) 1.2
Area (KGE) 184 802 47 97.1 114 350 410
I (MHz) 450 135 71 383 258 198 568
T @ fo* SO SO sustained sustained peak peak
(Mbps) 300 194 10 92 620 431.8 757
Nr,A 1.6 0.2 0.2 0.95 5.4 12 1.9
(Mbps/kGE) (0.8) (1.9) (10.9) (2.3) (2.6)
nE (b/nd) 2.17 1.1 - - 5.9 7 4.0
(11.8) (16.2) (5.5)
TABLE I

COMPARISON OFMIMO DETECTORS ONCMOSAND THE VLS| DESIGN PROPOSED IN THIS WORKVALUES IN BRACKETS RESULT FROM TECHNOLOGY
SCALING TO 65NM).

HO - hard output / SO - soft output.

mIAPP - abbreviated form ofmax-log-APP

a At BER = 10~° (information block size of 9216b) over a Rayleigh fading e, employing a 1/2-rate turbo decoder with 8 internal
iterations and random interleaving.

b At BLER = 1% (code block size of 1944b) over a Rayleigh fading channepleying a 1/2-rate LDPC decoder with 10 internal iterations

¢ At FER = 1% (frame size of 1024b), employing a 1/2-rate convolutionadie with a soft-input Viterbi decoder and random interlagvi

d At BER < 1075 over a TGn type C (frequency-selective) channel, employirf3-rate convolutional code with a (soft-input) Viterbi
decoder and random interleaving.

e At BER = 10~3 (data packet size of 96b) over a Rayleigh fading channel.

f At BER = 10~ (information block size of 9216b) over a Rayleigh fading e, employing a 1/2-rate convolutional code and block
interleaving.

g At PER = 10% (packet block size of 864b) over a Rayleigh fading channalpleying a 5/6-rate convolutional code and block interiegv

h  Reported results correspond totax 4 MIMO configuration.




