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Efficient Architecture for Soft-Input Soft-Output
Sphere Detection with Perfect Node Enumeration
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Abstract—The application of the turbo principle allows to
exploit the full potential of MIMO communications, at the cost
of increasing the computational effort at the receiver. In the
context of soft-input soft-output (SISO) tree search detection,
the computation of metric values and of the optimal node
order represent two of the most computationally demanding
operations. Heuristic approaches may be applied to reduce the
complexity, but their accuracy is compromised by the effectthat
the input soft information has on the node ordering. The design of
adaptive, good-performing and cost-effective tree searchdetectors
for iterative receivers represents hence a challenging task. To
alleviate these complexity and performance loss drawbacks, an
efficient MIMO sphere detector realization is proposed in this
work. A novel smart-sorting enumeration approach offers a
significant gain in terms of throughput (from 40% up to a factor
5) and energy efficiency (up to80% energy saving in the low SNR
regime) with regard to preceding implementations. Owing tothe
additional low delay and area cost reported, the proposed design
represents a very promising candidate towards a fast, accurate,
and efficient MIMO detector.

Index Terms—Multiple-input multiple-output (MIMO), soft-
input soft-output (SISO) sphere detection (SD), Schnorr-Euchner
(SE) enumeration, ASIP architecture, VLSI design.

I. I NTRODUCTION

M ULTI-ANTENNA detection belongs to the most
computationally intensive constituents of the re-

ceiver’s baseband signal processing, especially regarding
spatial-multiplexing transmission. Designing adaptive,good-
performing and cost-effective MIMO detectors represents a
challenge, particularly concerning high-order systems (i.e.,
≥ 4× 4 MIMO configurations with≥ 64-QAM modulations)
in the context of iterative receivers. The turbo principle allows
exploiting the full potential of MIMO communications by
exchangingsoft-information between the detector and the
channel decoder. This enables enhancing the communication’s
reliability drastically or, alternatively, reducing the transmit
energy substantially while guaranteeing a maximum target
error rate. However, this benefit comes at the cost of increasing
the receiver’s overall complexity. Namely, the detector module
has to be able to generate soft output information, as well asto
process the soft input data received from the channel decoder.
The presence of soft input information (known asa priori
information) introduces a shuffling effect on the tree node
enumeration sequence [1]. This sequence indicates the order
in which nodes should be examined, and has a strong effect on
the complexity and even the detection accuracy of tree-search
algorithms [1]. Determining the ideal order in an accurate and
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efficient manner represents one of the major challenges in soft-
input soft-output (SISO) detection. The Schnorr-Euchner (SE)
enumeration is a widely known strategy to find the optimal
sequence of symbols (i.e., sorted in ascending order of their
metric values). Unfortunately, the complexity of exhaustive
SE becomes unmanageable (especially for high-order modu-
lations), since the metrics of all the constellation symbols have
to be repeatedly computed and sorted during the tree search.In
order to reduce the computational cost, the ideal SE ordering
can be approximated by exploiting the geometrical properties
of the considered QAM constellation. Some examples are
the circular or column-wise zig-zag enumerations employed
in [2] and [3], respectively, as well as the sector-based ap-
proach proposed in [4]. The latter, so-called search sequence
determination (SSD), is a heuristic method which, combined
with an estimation of the metric values, reduces the compu-
tational effort enormously [4], [1]. A common disadvantage
of these geometry-based enumeration strategies is that they
neglect the influence of thea priori information, consequently
constraining the gain of iterative detection-and-decoding, as
shown e.g., in [4]. A pragmatic low-complexity solution to
this, firstly proposed in [5] and further analyzed in [6], consists
in iteratively reusing a list of candidate tree paths. Theseare
obtained by a soft-output detector, without re-running thetree
search on every iteration. The gain provided by this approach
is however very limited and a high number of candidates has
to be collected in order to achieve an acceptable error-rate
performance [6]. In [4], [7], [8] and [1], several corrective
strategies have been proposed to enable the utilization of the
SSD enumeration in iterative systems. While these solutions
improve the error-rate performance to some extent, the benefit
provided by the turbo principle is still not fully exploited. In
[9], two enumeration approaches based either on the channel-
state knowledgeor on thea priori information are proposed. A
hybrid enumeration strategy deriving from these is presented
in [10]. In this case, a sequence of symbols is estimated by
means of the SSD approach from [4] and the PAM-like enu-
meration algorithm from [3]. A second sequence is obtained
by computing, sorting, and optionally storing thea priori
information corresponding to all the constellation symbols at
all tree layers. The effective enumeration sequence is then
determined during runtime by computing and comparing the
metrics of the symbols from both sorted successions and se-
lecting the one with the lowest value. Even though this method
approaches the ideal SE ordering, it entails a certain non-
negligible complexity resulting from the need to determinetwo
enumeration sequences, in addition to the required compare
and sorting operations. To sum up, none of the state-of-the-art
approaches provides an efficient and low-complexity solution
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to enumerate the symbols correctly in the presence ofa priori
information. In contrast to this, the mechanism proposed in
this work exploits the properties of quadrature modulations
to provide the optimum enumeration sequence, while saving
95% of the computational effort required by an exhaustive
SE search. In order to demonstrate the suitability of the pro-
posed enumeration method, a low-complexity MIMO sphere
detector [11] has been considered and analyzed throughout this
work. A VLSI architecture concept is additionally presented
and evaluated. After introducing the communications system
model and the basic principles of MIMO detection in sections
II and III, respectively, relevant node enumeration mechanisms
are described in section IV. In section VI, an overview of key
strategies to enable an efficient detector realization is provided,
followed by a detailed description of the proposed architecture
(section VII). Lastly, the resulting circuit’s characteristics
are analyzed and compared to state-of-the-art realizations in
section VIII, before summarizing the contributions of this
work in section IX.

II. SYSTEM MODEL

In order to evaluate the performance of the proposed de-
tection approach, a bit-interleaved coded modulation (BICM)
transmission scheme [12] supporting iterative processingat
the receiver [13], [14] is considered, as depicted in Fig. 1.
The MIMO spatial-multiplexing system hasNT = NR = 4
transmit/receive antennas. The coded and interleaved streams
c of bits to be transmitted are mapped onto a vectorx(c) of
complex constellation symbolsx from a QAM constellation
set X with Q = 64 symbols (i.e.,L = 6 bits per symbol).
An uncorrelated, fast-, flat-fading Rayleigh channel model
is considered and assumed to be perfectly known at the
receiver. The channel is represented byH ∈ CNR×NT , with
entries of a zero mean independent and identically distributed
(i.i.d.) gaussian random process of variance 1. An AWGN
vector n ∈ CNR×1 comprised of zero-mean i.i.d. gaussian
random variables of varianceN0/2 per real dimension is
added at the receiver. The received signaly is therefore given
by y = Hx + n. The receiver is mainly comprised by
the complex-valued tuple-search sphere detection algorithm
[11] described in section III, in conjunction with a turbo
channel decoder. The detector and the decoder are coupled
through the corresponding (de-) interleaving blocks and may
generate and exchange soft information (LDet/Dec, LDet/Dec

a )
in iterative fashion, in order to improve the communications
error-rate performance cooperatively [13]. In the following, the
notation∗Det/Dec will be dropped for the sake of simplicity.
A simulation setup equivalent to the one applied in e.g., [5],
[6] is considered1 to ease comparing the results with previous
works.

III. T UPLE-SEARCH SPHEREDETECTION

The task of a MIMO detector is the determination of the
most likely sent vector of bitsc, as well as of reliability

1The turbo channel decoder employs a BCJR (Bahl, Cocke, Jelinek and
Raviv) algorithm with (7R, 5) convolutional codes and 8 internal iterations.
A coding rateRc = 1/2 is applied. An information block size of 9216 bits
(including tail bits), Gray mapping and random interleavers are considered.
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Fig. 1. Communications system model with BICM transmitter and iterative
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Fig. 2. Tree search example for a BPSK modulation (L = 1) and NT =
NR = 4 antennas. Dashed lines represent pruned paths.

information for each bitcm,l. This can be accomplished by
calculating the so-called log-likelihood ratios (LLRs)

L (cm,l|y) = ln

(
P (cm,l = +1|y)
P (cm,l = −1|y)

)

(1)

by means of a tree search detection strategy. The main idea
behind tree search approaches is to represent the setV of all
likely transmitted symbol vectors as a weighted tree structure,
as exemplified in Figure 2. The number of levels of the tree
is defined by the amount of MIMO layers or, equivalently,
of transmit antennasNT (assuming spatial multiplexing with
one transmitted symbol stream per antenna). Every tree layer
i comprises2L(NT−i) nodes, each representing a constellation
symbol x ∈ X . A set of Q child nodes descend from each
parentnode into the next layer (i−1). The tree root is defined
by the topmost layer (i = NT), while theleaf nodes compose
the lowest layer (i = 0). Each of the treepaths (i.e., tree
edges connecting parent and child nodes from the root to
a leaf) is weighted by a metricλ. Instead of searching the
complete setV , tree-search detectors only consider a subset
L ⊂ V of candidates. By additionally applying themax-log
approximation [15], themaximum a posteriori(MAP) solution
of (1) (i.e., the exhaustive-search solution) is approximated
[5] as (2). For the given received MIMO vectory and the
estimated symbol vector̂x(c) (represented by the vector of
bits c), the required metric valuesλ take then the form in (3).

L (cm,l|y) ≈

− 1

N0
min

x∈L|cm,l=+1
{λ}+ 1

N0
min

x∈L|cm,l=−1
{λ} . (2)

λ (y, c,La) = ‖y −Hx̂(c)‖2 − N0

2

NT−1∑

i=0

L−1∑

j=0

ci,jLa(ci,j), (3)
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The vectorLa contains the soft-informationLa(ci,j) generated
by the channel decoder (i.e., thea priori information) for
each bit ci,j of vector c. To map all transmit symbols to
a tree structure, the channel matrix must be decomposed in
a way that a successive dependency among antennas can be
established. This transformation can be performed by means
of e.g., the QR decomposition (QRD) of the channel matrix
H = QR, whereQ is unitary andR an upper triangular
matrix with elementsri,j [16]. The triangular structure ofR
allows an ordered layer-wise exploration of the tree from the
root to the leaves level. By modifying the received symbols
as y′ = QHy, the Euclidean distance‖y −Hx̂(c)‖2 is
reformulated as‖y′ −Rx̂(c)‖2 and the metricsλ in (3)
can be recursively calculated by accumulating each layer’s
contribution as

λi = λi+1
︸︷︷︸

metric from
already estimated

symbols

+
∣
∣ y′′i
︸︷︷︸

interference reduced
symbol

−riix̂i

∣
∣
2 − N0

2

L−1∑

j=0

ci,jLa(ci,j)

︸ ︷︷ ︸

λa(x̂i)

(a-priori information)

,

(4)

y′′i = y′i −
NT−1∑

j=i+1

rij x̂j . (5)

In (4), thepartial metric λi (i > 0) represents the influence
of the upper layers, whereasλ0 = λ (y, c,La) denotes the
total path metric, i.e., the metric corresponding to a complete
estimated MIMO symbol vector̂x(c). The interference among
layers is successively suppressed by applying (5). Finding
the MAP solution (i.e., the so-called detectionhypothesis)
is not sufficient to generate soft information, since this does
not necessarily minimize the two terms in (2). Instead, an
exhaustive search for all theL ·NR required minima (the so-
called counter-hypotheses) must be performed as well. Since
an exhaustive search of all minima entails an impractically
high complexity [17], the search space is reduced by applying
a sphere detection approach. Sphere detectors introduce a
certain constraintR (known asradius) to limit the maximum
value of the nodes’ metrics. All tree nodes whose partial
metrics exceed the defined radius value (λi > R) are excluded
from the search, as exemplified in Figure 2 by dashed lines.
These excluded nodes, as well as the subtrees descending
from them (which are also excluded from the search) are said
to be pruned. From the large variety of existing tree search
detection strategies, the tuple search sphere detector (TSD)
proposed in [11] has demonstrated to outperform the error-
rate-complexity trade-off of existing sphere detection strategies
(such as single tree search (STS) [18], list sphere detection
(LSD) [19] or K-best detection [20]), while representing a
promising approach towards an efficient VLSI realization
[21], [22]. The TSD strategy keeps a sorted list (ortuple)
T := {λ0 (c1) , λ0 (c2) , . . . , λ0 (cT−1)} containing the best
T candidate path metricsλ0 (ct). The sphere radius is defined
as the maximum metric in the tuple:

R = max
ct

{λ0 (ct)} = λ0 (cT−1) . (6)

For the LLR computation, an additional list is employed
to store the best candidate metrics found for each of the

L ·NR bits cm,l. Additionally applied mechanisms for further
reduction of complexity are the sorted QR decomposition
(SQRD) [16], the MMSE channel matrix extension [23] and
the radius and LLRs clipping [24].

IV. N ODE ENUMERATION STRATEGIES

The complexity of the tree search process is strongly
influenced by the order in which the constellation symbols
descending from a parent node are explored. To avoid spending
computational effort on subtrees which will be eventually
pruned by the radius constraint, tree paths which are ad-
vantageous for (2) (i.e., presenting small metrics) should
be explored firstly. Consequently, tree nodes are preferably
examined in ascending of their partial metrics. To accomplish
this, numerous enumeration methods have been proposed (e.g.,
[9], [10], [3], [4]) which mainly differ in their complexity
and accuracy. None of these state-of-the-art approaches pro-
vides, however, an efficient and low-complexity solution to
enumerate the symbols correctly in the presence ofa priori
information. In contrast to this, the proposed smart-sorting
enumeration with quadrature metric computation (SSE-QMC)
strategy [25] guarantees perfect node ordering while keeping
an acceptably low complexity, as shown in section VIII. In the
following, the exact exhaustive Schnorr-Euchner computation
approach, the geometry-based approximation of [4] and the
proposed SSE-QMC mechanism are presented.

A. Exact Exhaustive Enumeration

The Schnorr-Euchner (SE) enumeration [26] is a widely
known strategy to determine the ideal node ordering,
consisting in a sequence of constellation symbols
[x0

i , x
1
i , . . . , x

(Q−1)
i ] sorted in ascending order of their

partial metrics (λi(x
0
i ) ≤ λi(x

1
i ) ≤ . . . ≤ λi(x

(Q−1)
i )). The

complexity of the (exhaustively applied) SE method grows
exponentially, since the partial metrics of allQ constellation
symbols have to be repeatedly computed and sorted for each
parent node in the tree. This represents an enormous waste of
computational resources, since symbols whose metrics violate
the radius constraint(λi(x

k
i ) > R) will not be explored and,

consequently, enumerating them is unnecessary.

B. Approximated Enumeration

Disregarding the contribution of thea priori information
to the metrics, the node ordering is uniquely depending on
the Euclidean distances between the (normalized) interference-
reduced received signaly′′′i = y′′i /rii and the constellation
symbols:

(∆k
i )

2 =
∣
∣y′′′i − x̂k

i

∣
∣
2
, with k = {0, . . . , Q− 1}. (7)

The enumeration can be directly visualized on the constellation
plane, where geometrical properties can be exploited in order
to approximate the ideal SE ordering with a considerably
low computational cost. An example of this is the so-called
search sequence determination (SSD) method proposed in [4],
which divides the constellation space into geometrical decision
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Fig. 3. Section of a 64-QAM constellation. The constellation’s space denoted
by a grey-shaded area is partitioned into 5 decision regionsfor the search
sequence determination (SSD) approach.

regions (as illustrated in Figure 3). The node ordering is de-
termined by a predefined node succession, which is associated
to the decision region wherey′′′i is found. The computational
complexity can be further reduced by replacing the metric
calculation in (4) by a metric estimation (ME) approach
based on this sector-aided strategy. The distances∆k

i between
the constellation symbols and the (normalized) interference-
reduced received signal can be replaced by predefined ge-
ometrical distances∆k′

i [27] [21] between the constellation
symbols and fixed reference pointszrefi (such as the geometric
centers of the defined decision regions):

r2ii(∆
k
i )

2 = r2ii ‖y′′′i − x̂i‖2

≈ r2ii
∥
∥zrefi − x̂i

∥
∥
2
= r2ii(∆

k′

i )2. (8)

It is additionally possible to precalculater2ii as well as
r2ii(∆

k′

i )2 in order to simplify the complex-value products in
(4) to a single real-value multiplication2 or even to eliminate
these operations completely.

The reduced computational complexity of the SSD and
ME mechanisms make them seemingly attractive for hard-
ware implementation, but these strategies also present some
drawbacks. Firstly, in iterative scenarios the metric values do
not depend only on the Euclidean distances, but also on the
contribution of thea priori informationλa(x̂i). Consequently,
a sorted sequence of symbols can not be predicted by solely
examining∆k

i . Euclidean-distance-based enumeration strate-
gies are thus suboptimal and may lead to considerable error-
rate performance degradation, as shown in [1]. To cope with
this disadvantage, themin-search(MS) andadaptive hypoth-
esis (AH) approaches proposed in [4] and [1], respectively,
correct the hypothesis by taking thea priori contribution
into account. These techniques compensate the performance
loss to some extent, whereas the detection accuracy is still
suboptimal [1]. An additional disadvantage is representedby
the loss of accuracy caused by the estimation of the metrics,
which leads to a degradation of the error-rate performance
[21]. Additionally, the memory requirement increases since
the precomputed distances(∆k′

i )2 (or optionally the products
r2ii(∆

k′

i )2) have to be stored.

2For a conveniently chosen QRD,rii only contains positive real values.

C. Smart-Sorting Enumeration with Quadrature Metric Com-
putation (SSE-QMC)

Existing tree search detection algorithms generally compute
(4) repeatedly, disregarding the fact that the already deter-
mined quadrature components can be reused for other symbols
with the same real or imaginary parts. The strategies proposed
in this work, in contrast, exploit the latter property by initially
determining and sorting the metrics’ quadrature contributions,
as described in the following. The proposed smart-sorting
enumeration with quadrature metric computation (SSE-QMC)
simplifies the metric computation significantly and saves an
enormous amount of sorting operations, as demonstrated at
the end of this section. The SSE-QMC mechanism relies on
the following observations:

1) Quadrature metric computation (QMC):

• For the considered QAM modulation, both the Eu-
clidean distances and thea priori contributionsλa

in (4) can be decomposed in two additive quadrature
components:

λR

(i)(xi) = R{r2ii(∆Eucl.
i (xi))

2}+N0λ
R
a (xi)

λI

(i)(xi) = I{r2ii(∆Eucl.
i (xi))

2}+N0λ
I
a(xi)

(9)
with

λR

a (xi) =

L/2−1
∑

j=0

|La(ci,j)|

with ci,j 6=sign(La(ci,j))

, λI

a(xi) =

L−1∑

j=L/2

|La(ci,j)|.

with ci,j 6=sign(La(ci,j))

• The layer partial metric of any constellation symbol
x̂
(kR,kI)
i can be hence determined by simply adding

the corresponding quadrature components:

λ(i)

(

x̂
(kR,kI)
i

)

= λR

(i)

(

x̂kR

i

)

+λI

(i)

(

x̂kI

i

)

. (10)

By these means, the matrix of metrics illustrated
by the example in Figure 4 can be composed (each
matrix element corresponds to a symbol of a 16-
QAM constellation). It should be noticed that, in
order to obtain any of theQ partial metric values,
only

√
Q partial metric components have to be

computed in each dimension.

2) Smart-sorting enumeration (SSE): By sorting the
metric quadrature components in ascending order, the
exact SE sequence can be determinedgradually. Con-
sequently, the tree nodes can be enumerated as they are
required by the search process, instead of all at once (as
required by the conventional SE enumeration approach).

The SSE-QMC procedure enumerates the tree nodes on the
basis of these observations, by performing the following
operations (exemplified in Figure 4):

1) Compute the
√
Q quadrature components of the

partial metrics in each dimension (λR

(i) and λI

(i)),
according to (9).

2) Sort the quadrature components in ascending order,
as depicted in Figure 4(a).

This document is a preprint of: E. Perez Adeva and G. Fettweis, “Efficient Architecture for Soft-Input Soft-Output Sphere Detection with Perfect Node Enumeration,” in
IEEE Transactions on Very Large Scale Integration Systems (VLSI), Mar 2016. DOI:10.1109/TVLSI.2016.2526904

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS,VOL. XX, NO. X, XXX 2015 5

0 1 2 3

0.05 0.43 1.26 2.38

0 0.06 0.11 0  0.11 0 0

1 0.42 1  

2 1.27 2  

3 2.36 3  

λ
(i)

R→
I ↓

kI

kR

λ(i) kR kI
Stack

→

↓

(a) After enumerating the first symbol.

0 1 2 3

0.05 0.43 1.26 2.38

0 0.06 0.11 0.49 1.31 2.44 0  2.53 2 2

1 0.42 0.48 0.85 1.68 2.80 1  2.79 1 3

2 1.27 1.32 1.70 2.53 2  2.8 3 1

3 2.36 2.42 2.79 3  

λ
(i)

R→
I ↓

kI

kR

λ(i) kR kI
Stack

→

↓

(b) After enumerating the first 11 symbols.

Fig. 4. Sample matrix of metrics and stack content for the SSE-QMC approach, after sorting the metrics’ quadrature components (each of the matrix elements
corresponds to one symbol of a 16-QAM constellation). Grey-shaded cells correspond to symbols which have been already enumerated (i.e., examined by the
tree search).

3) Select the global minimum(i.e., the element at the top-
left corner of the metrics matrix) as the first symbol in
the enumeration sequence.

4) Expand two new candidates of the metrics ma-
trix (one along each quadrature component) depart-
ing from the previously selected symbol̂x(kR,kI)

i ,

i.e., compute the partial metricsλi

(

x̂
(kR+1,kI)
i

)

and

λi

(

x̂
(kR,kI+1)
i

)

according to (10). The metric computa-
tion operation performed here consists in simply adding
the already calculated quadrature components. In order
to avoid generating new metric values unnecessarily (i.e.,
in case that better ones have been already computed) a
controlled-expansionmechanism is applied.

5) Add the newly determined enumeration candidates
to the stack and sort them in ascending order of the
partial metrics, as illustrated in Figure 4(b).

6) Select the next symbol to be explored within the tree
search (which is always contained in the first position
of the stack), and remove it from the stack.

7) Repeat steps 4 to 6in order to enumerate further
tree nodes, if required. The enumeration process finishes
whenever all constellation symbols have been explored
or the corresponding subtree is pruned (e.g., by the
radius constraint).

Thecontrolled-expansion mechanism mentioned in step 4 pre-
vents unnecessary metric computations, hence avoiding stack
overflows. Specifically, a new metric component is computed
only if all the previously determined metrics within the same
column/row have been already examined. In order to determine
if a better metric has been already computed, no metric
comparison is required. Due to the previous sorting of the
metric quadrature components in ascending order, examining
the element’s indexes within the matrix (kR, kI) is sufficient.
By means of this controlled-expansion strategy, the stack size
is kept reasonably small and overflow situations are prevented.
It should be noticed that only the stack content needs to be
stored, whereas the metrics matrix is employed here only for
illustrative purposes.

V. PERFORMANCEANALYSIS

The overall complexity of a tree search algorithm can be
assessed from two different perspectives, namely the compu-
tational complexity of each node extension (i.e., how computa-
tionally costly is to extend a single parent node of the tree), and
the node count (i.e., the number of required parent node exten-
sions). The latter is depicted in Figure 5, along with the error-
rate performance. A scenario withIt = 4 detection-decoding

MC (4) SE [26]
This work

QMC SSE
add 192 - 80 -
multiply 128 - 16 -
compare - 4096 - 128
accumulate - 512 - 16

TABLE I
COMPARISON OF THE COMPUTATIONAL COMPLEXITY(IN NUMBER OF

OPERATIONS) OF THE SCHNORR-EUCHNER ENUMERATION(SE)WITH
STANDARD METRIC COMPUTATION(MC) AND SMART-SORTING

ENUMERATION (SSE)WITH QUADRATURE METRIC COMPUTATION

(QMC).

iterations is considered. The performance of the unconstrained
single tree search (STS) strategy [18] with SE enumeration is
included for reference, representing the optimal detection ac-
curacy boundary (i.e., the performance of exhaustivemax-log-
APP detection [28]). In the considered iterative scenario, the
SSD enumeration sequence is expected to diverge significantly
from the exact SE ordering, resulting in a considerable error-
rate performance loss. This effect is indeed exhibited in Figure
5(a), where the error rate of the TSD-SSD algorithm shows
a clearly appreciable error floor. The corrections performed
by the Adaptive Hypothesis(AH) [4] and the Min-Search
(MS) [1] approach offer a noticeable enhancement of the
error-rate performance, which is nonetheless still suboptimal.
The SSE-QMC strategy, in contrast, achieves the same error-
rate performance than the exact SE enumeration, but also a
similar node count, as shown in Figure 5(b). The latter can be
easily mitigated by simply applying the internal radius clipping
mechanism of [6]. By these means, the average number of
nodes accumulated over the 4 iterations is reduced by20%
(at BER = 10−5) with regard to the SE enumeration. As
a result, the number of tree nodes explored by the proposed
TSD-SSE-QMC approach (which provides the optimal node
ordering) is comparable to the one of the TSD-SSD-ME
strategy (which just approximates the ideal node sequence).
The main advantage of the proposed SSE-QMC enumeration
strategy resides, however, in the reduction of the computational
complexityper node extension, rather than the in the reduction
of the node count. Table I compares the computation count of
the SSE-QMC approach against the one of exhaustive Schnorr-
Euchner enumeration with state-of-the-art metric computation
(4). To determine the number of compare and accumulate
operations, the fast sorter architecture described in section
VII has been assumed in both cases. The novel SSE-QMC
mechanism achieves a drastic reduction of the computational
effort, which causes a decrement of80% in the complexity
of the metric computation (on average), and a reduction of
97% in the complexity of the node enumeration process. To
further reduce the complexity, the quadrature components of
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Fig. 5. Performance comparison of different detection strategies in an iterative receiver withIt = 4 turbo iterations (4× 4 MIMO, 64-QAM, T = 16).

the a priori information (λR
a and λI

a ) can be pre-computed
and stored (since they remain constant during the detection
process). Throughout the next sections, the complexity of the
proposed VLSI implementation will be evaluated.

VI. TOWARDS AN EFFICIENT VLSI I MPLEMENTATION

The design’s aspects contributing to restrict the incurred
hardware complexity as well as to increase the processing
capacity are described in the following.

A. Algorithm Partitioning

The sphere detection process can be decomposed, as orig-
inally proposed in [29], [27], into several functional blocks
( a . . . n ) comprising the regularized data flow diagram illus-
trated in Figure 6. The depicted operationsloop is executed
iteratively, examining one tree node in each iteration. Note that
the data path has been explicitly divided into two branches.
The path comprised by light-grey shaded blocks encloses
the operations required by the tree node extension process,
whereas the dark-grey shaded blocks contain the operations
required to generate the soft-output information. The tree
search procedure has been regularized [29], [27] in order to
simplify the control flow and ease parallelization (e.g., single-
instruction multiple-data -SIMD). The regularization concept
consists in executing the same computation pattern in each
iteration, regardless of the value of runtime data (such as e.g.,
the current tree layer). For this purpose, ”dummy” operations
are introduced and multiplexing logic is inferred in order to
select only valid data for further processing.

As shown in Figure 6, the first and the second tree nodes
(x0

i , x1
i ) to be explored are determined by blocksa and b ,

respectively, according to the selected enumeration strategy
(SSD or SSE). Note that in case the SSE approach is applied,
the metric’s quadrature components have to be previously
computed, as denoted by blocka’ . In case the SSD approach
is applied, the corresponding search sequence has to be deter-
mined instead (blockb’ ). The partial metrics of the two first
nodes (λi(x

0
i ), λi(x

1
i )) are subsequently computed, by means

of the QMC or ME approach, within the respective blocksc
and e . Analogously, the corresponding reduced-interference
received signals (y′′′i ) are calculated according to (5) in blocks
d and f . The previously determined partial metricλi(x

0
i ) is

subsequently considered in order to update the radius tuple(6)
within block g . This operation is performed at each tree layer
for the sake of regularization, whereas it only takes effectat
layer i = 0. The next step consists in selecting the tree layer
to be processed within the next loop (blockh ). In case the
search proceeds on the same layer or traces back to upper
tree layers, a new sibling node needs to be enumerated, its
corresponding partial metric has to be determined, and the
inter-antenna interference has to be computed. It should be
noticed that these operations (performed by blocksi , j and
k , respectively), are rather unconditionally executed in order
to keep the regularized control flow. Likewise, the operations
involved in the soft-output generation, which are actually
required only at layeri = 0, are nevertheless continuously
executed regardless of the tree layer. In particular, the bit-
specific metrics required for the LLR values are determined
by block l , and the stored subset of candidates is thereafter
updated by blockm. Finally, the LLR values are computed
in block n . As shown in Figure 6, the end-condition (which
terminates the execution as soon as the root nodei = NT − 1
is reached) is the only conditional operation required.

B. Memory Access

The designs proposed in section VII are accelerated
by means of application-specific instruction-set processors
(ASIPs). The data path, depicted in Figure 8, comprises the
MIMO detection module, an address generation unit and
several data memories, particularly:

• Input vector memory (VMEMI): this memory contains
the vectors ofNT received signalsy.

• La vector memory (VLAMEM): it stores the vectors
of NT · L a-priori valuesLa (cm,l), generated by the
channel decoder in order to enable the application of the
turbo principle.
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Fig. 7. TSD’s task scheduling and pipelining schemes.

• Output vector memory (VMEMO): the vectors of LLR
valuesL (cm,l|y) generated by the MIMO detector are
contained in this memory.

• Scalar memory (SMEM): this memory contains con-
figuration data (such asNT, Q and T ) and channel
information, including the channel matrixR and the
precomputed productsr2ii(∆

k′

i )2 (8) (required by the ME
approach). A cache which holds a partial copy of the
SMEM content was additionally introduced in [30]. This
storage element allows faster data access and saves costly
(in terms of latency) memory access operations. It should
be emphasized that no precomputed data are required
by the QMC strategy, in which case the configuration
information can be relocated into VMEMI, while SMEM
and the cache (256 bytes each3) can be completely
eliminated from the design.

C. Scheduling and Parallelization

In [30] the computational complexity and the latency of the
operations comprising the TSD-SSD-ME detection algorithm

3The stored information is represented with 8-bit precision[30], [1].

have been investigated. A time budget (in clock cycles) has
been defined for each functional block, based on the number
of sequential add-equivalent4 operations (assuming a suffi-
cient degree of internal bit-level parallelism5). The overall
latency is reduced by partially overlapping the execution of
the defined functional blocks (i.e., through instruction-level
parallelism) [30], [22]. The proposed scheduling scheme is
illustrated in Figure 7(a), presenting an overall delay of 10
clock cycles. The data generated by blocksm, n and f
are not required by the immediately subsequent detection
loop(s) [30] and, consequently, a new iteration can be triggered
every 5 clock cycles instead. In the case of the TSD-SSE-
QMC detection approach, the node enumeration as well as
the metric computation modules have been modified in order
to implement the SSE and QMC strategies, respectively. The
different computational effort and data dependencies of these

4The specific definition of add-equivalent operation as well as a detailed
breakdown of the blocks’ latencies can be found in [30]. The latter are also
depicted in Figure 7. Each add-equivalent computation is assumed to consume
one clock cycle.

5Bit-level parallelism of the proposed architecture is depicted in section
VII.
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blocks with respect to the analogous modules in the TSD-
SSD-ME design (described in detail in section VII) require
a modified task scheduling scheme (as depicted in Figure
7(b)). Particularly, the computation of the quadrature partial
metrics is firstly performed in blocka’ , with a time budget
of 2 clock cycles. The first and second enumerated nodes, as
well as their corresponding partial metrics, are subsequently
determined in blocksa , b , c and e , with a time budget of
1 clock cycle. In parallel to this, successive sibling nodesare
analogously enumerated

(
i , j

)
. The operations to determine

the radius and the tree layer
( g , h

)
are scheduled exactly

as in the case of the TSD-SSD-ME approach, whereas the
execution of the interference-reduction units has been delayed
by 1

(
f
)

and 2 clock cycles
(

d , k
)
. In order to maintain the

proposed 5-cycle architecture, the time budget for these units
has been reduced to 2 clock cycles, as illustrated in Figure
7(b). As later discussed in section VIII, these modules do not
lie within the critical path and, consequently, no decay of the
maximum achievable clock frequency is expected. Lastly, the
units computing the bit-specific metrics and LLRs

(
l , m, n

)

keep the same timing structure as in the previous case. Note
that the newly proposed TSD-SSE-QMC approach presents a
fairly more compact and structured scheduling scheme than
the preceding TSD-SSD-ME design, which allows grouping
the execution (and thereby the hardware resources) of similar
functional blocks easily.

Pipeline-interleaving [31] has been applied to the proposed
TSD detector in order to enhance the design’s throughput [30].
Similarly as done in e.g., [32] and [33], several independent
data paths are pipelined and executed in interleaved fashion.
The previously described task blocks have been clustered
according to their execution timest, as illustrated in Figures
7(a) and 7(b). Resulting from this, 5 sets of parallel operations
are composed, each defining a pipeline stage. On this basis,
the throughput can be easily enhanced by simply interleav-
ing the pipelined execution of the 5 task-sets for different
detection paths. This procedure is illustrated in Figure 7(c),
where Dp

q ∈ {D0
q . . . D

4
q} denotes thep-th task-set of the

q-th detection path. The resource utilization is maximized
when the number of interleaved data paths equals the number
of available pipeline stagesP = 5, achieving an average
throughputτ :

τ =
LNTP

E[n]P + P − 1
f ′
CLK → LNT

E[n]
f ′
CLK [bps]. (11)

Ideally, the clock frequency reached by the pipelined circuit
f ′
CLK > fCLK increases by a factor of nearlyP with respect to

the non-pipelined architecture6 (f ′
CLK ≈ P×fCLK). Assuming

that a new detection starts as soon as another has finished, no
processing element (PE) is idle after filling in the pipe, leading
to the sustained throughput expression on the right-hand side
of equation (11). The memory address computation and access
operations are embedded in the pipeline structure, in parallel
to the detection algorithm’s computations. By these means,
the execution of a new detection path can be triggered as

6The actual speedup factor is constrained by the physical limitations of the
underlying technology.

Fig. 8. Block diagram of the MIMO detector ASIP architecture.

soon as another one is concluded, without stalling the pipeline
execution.

VII. A RCHITECTURES FORMIMO D ETECTION

The newly proposed SSE-QMC detector has been shown
to be a promising solution to cope with the disadvantages of
the SSD-ME approach. However, its efficiency has not yet
been assessed from the implementation point of view. For this
reason, both TSD-SSD-ME and TSD-SSE-QMC architectures
will be analyzed and compared7 in the following. Both MIMO
detector realizations have been optimized for a 4×4 MIMO
system employing a 64-QAM modulation. A dedicated func-
tional unit (FU) has been defined for each of the task blocks
a − n shown in Figure 6, with the exception ofb and b’
- which are merged together. In the following, the architecture
of those units involved in the node enumeration and the
metric determination tasks will be described and illustrated,
highlighting in each case the critical path by means of a red
arrow. Remaining units of the MIMO detector are common to
both designs and are thus omitted here (a complete description
can be found in [30], [22] and [1]).

A. Node Enumeration Unit (NEU)

The NEU block enumerates the nodes to be examined
during the tree search in the appropriate order. In the case of
the SSD approach, the pre-computed enumeration sequences
are stored in a small (≈ 32 bytes) look-up-table (LUT).
The first nodexref

i is directly obtained by rounding the
normalized reduced-interference received signaly′′′i to the
closest constellation symbol, whereas subsequent symbolsare
directly selected from one of the enumeration series contained
in the LUT, as illustrated in Figure 9(a). The appropriate node
sequence is identified by determining which of the quantized
constellation regions in Figure 3 contains the received signal
y′′′. For this purpose, simple comparisons of the real and the
imaginary components of∆r = y′′′ − xref

i are required, as
described in detail in [4]. In the case of the SSE approach, this
unit implements the node enumeration procedure described in

7An architecture concept for the soft-output TSD-SSD-ME approach was
firstly presented in [30], [22] and brought to silicon in [34]. An extended
design was proposed in [1], adapted to support processing ofa-priori infor-
mation. In this regard, the adaptive hypothesis strategy proposed in [1] was
incorporated in order to enable achieving an acceptable error-rate performance
in iterative detection↔decoding receivers. On-chip measurements of the
corresponding silicon realization can be found in [35].
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section IV-C (steps 3 to 6). The first node in the enumeration
sequence is directly obtained (step 3) after sorting the metrics’
quadrature components (previously determined by the metric
computation unit). In order to enumerate further nodes, steps
4 to 6 are executed. As illustrated in Figure 9(b), only two
parallel adders are required to compute the partial layer metrics
of successive nodes. These values are added to the stack,
which is subsequently sorted by means of the fast sorter circuit
described below. The next sibling symbol (which occupies
the first position in the stack after the sorting process) is
then selected and removed from the stack. Two additional
parallel adders are required to add the metrics accumulated
throughout the upper tree layersλi+1. The complexity of
this unit is thus comparable to the one of the SSD, which
requires a similar amount of adders and comparators. The
SSD requires, in addition, a LUT to store the pre-defined
enumeration sequences.

B. Metric Computation Unit (MCU)

As described in section IV, the ME approach pre-computes
the productsr2ii(∆

k
i )

2 and eventually stores them in a cache
(65 bytes). Consequently, (4) is simplified to a single addition
operation, as illustrated in Figure 10(a). The TSD-SSE-QMC
design, in contrast, performs an exact computation of the
metrics according to (9) and (10), instead of the estimation
in (8). The metric computation introduces two multipliers
for each of the quadrature components (namely the squared
operation|y′′′i − x̂i|2 and the subsequent multiplication with
rii). As illustrated in Figure 10(b), the SSE-QMC approach
proposed in section IV-C requires a total of2

√
Q multipliers

per dimension, thus increasing the computational complexity
considerably with respect to the SSD-ME approach. Further-
more, the parallelism of the block which computes thea priori
contribution increases to

√
Q parallel instances per dimension.

The quadrature metric components are sorted by employing
the fast sorter circuit described below, which also entailsa
complexity increase with respect to the SSD-ME approach.
The memory requirement is reduced, on the contrary, since no
pre-computed Euclidean distances need to be stored. It should
be noticed that this unit (corresponding to task blocka’ in
Figure 6) computes only the metrics’ quadrature components,
whereas the final partial metric values (including the upper
layer’s metric) are subsequently obtained in the NEU, as
previously described.

C. Soft-Output Computation Unit (SOCU)

This unit is involved in the generation of soft-information
(i.e., LLR values) for the channel decoder. In particular, it
determines theL most favorable counter-hypotheses among
all candidate leaf symbols, enumerating them according to
predefined leaf-specific sequences [11]. For this purpose, in-
stances of the MCU and parts of the NEU (Figures 10(a) and
9, respectively) are utilized. The SSD-ME approach estimates
the metric values of theL candidates, as described in section
VII-B. For this purpose,32 bytes are required to store the pre-
computed productsr2ii(∆

k
i )

2 for the leaf-specific sequences. It
should be emphasized that these pre-computed values do not

include the contribution of thea priori information, which
has to be additionally calculated. The SSE-QMC approach,
on the contrary, simplifies the computation of (4) to two
addition operations (to add the quadrature components and the
metric of the upper tree layer, respectively), as illustrated in
Figure 9(b). In contrast to the TSD-SSD approach, thea priori
contribution is not computed (since it is already contained
in the metric quadrature components provided by the MCU),
and less memory is required (since no pre-computed distances
r2ii(∆

k
i )

2 are stored).

D. Fast Sorter Circuit

The fast sorter circuit depicted in Figure 11 sorts a vector
of N positive valuesz = [z0, z1, . . . , zN−1] in a highly-
parallel manner. For this purpose, all theN values in the
considered set are compared against each other by a bank
of N2 parallel comparators. The output of this operation is
the N × N matrix of binary flags depicted in Figure 11.
Each binary valuebn,m indicates if the conditionzn > zm
is met (bn,m = 1) or not (bn,m = 0). The number of flags
bn,m = 1 within column m represents hence the position
(or index) that elementzm should occupy within the sorted
vector z′. In order to generate this sorting index, the binary
values within each column are added together by a bank of

N accumulators
N∑

n=1
bn,m,∨m = {1, 2, . . . , N}. Lastly, N

parallel multiplexers are employed to relocate the elements
of z within the output vectorz′ according to the computed
indexes. This highly-parallel circuit enables a very fast sorting
operation at the cost of having a complexity which scales
quadratically withN . This is obviously disadvantageous if a
large number of elements have to be sorted, as in the case of
the exhaustive Schnorr-Euchner enumeration (N2 = Q2) for
high-order modulations (e.g., 64-QAM). In contrast to this,
the number of values to be sorted by the presented SSE-QMC
strategy is reduced to onlyN2 = (

√
Q)2 = Q elements, as

discussed in section IV-C. This fact makes the proposed sorting
circuit affordable even for high-order modulations.

VIII. I MPLEMENTATION RESULTS

In order to assess the hardware cost of the proposed
SISO TSD-SSE-QMC architecture, the most relevant design’s
characteristics (area, delay, throughput and energy) willbe
evaluated in the following. Additionally, a comparison against
the SISO TSD-SSD-ME design of [1] will be provided. For
this purpose, the previously described SSD-ME and SSE-
QMC modules have been implemented and synthesized using
TSMC low-power 65nm libraries under typical case operating
conditions.

A. Area

The area (in GEs) required by the complete SSD-ME and
SSE-QMC modules is depicted in Figure 12. Note that the
area corresponding to the SOCU block accounts only for the
logic required by the metrics’ computation, whereas remaining
operations do not differ between the compared approaches
and are consequently omitted. As shown by these results, the
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size of the SSE-QMC’s MCU has grown significantly with
respect to that of the SSD-ME approach, as a consequence
of the complex-valued multiplications and the considerably
increased level of parallelism. The area increase exhibited by
the NEU due to the introduction of the stack maintenance and
sorting operations is less pronounced but still considerable. As
previously presumed, the area of the SOCU has been in con-
trast reduced, since the LUT storing the Euclidean distances
has been eliminated and thea-priori information processing
is entirely accomplished within the MCU. As previously dis-
cussed, the SMEM, its associated cache, and the corresponding
memory access control logic is not required by the SSE-QMC
approach, making the area of these components (enclosed in
the categoryOther in Figure 12) vanish. To sum up, the
proposed SSE-QMC strategy requires nearly 4 and 8 times
larger NEU and MCU modules, respectively, but a slightly
smaller SOCU block. Taking the additional memory saving
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Fig. 12. Area comparison of the SSD-ME and SSE-QMC modules (syn-
thesized under typical case operating conditions atfclk = 450MHz). ∗The
area of the SOCU block corresponds to the logic required exclusively for the
computation (estimation) of the Euclidean distances.

into account, the area balance corresponding to the complete
SSE-QMC block exhibits an overall60% increase with regard
to the SSD-ME module. It should be however noticed that the
node enumeration and metric computation units represent less
than 1/4 of the complete TSD design. A rough estimation
(Atotal

TSD−SSE−QMC
= Atotal

TSD−SSD−ME
− ASSD−ME + ASSE−QMC =

184kGE = 0.26mm2, with Atotal
TSD−SSD−ME

= 165kGE [1])
indicates that replacing the SSD-ME block by the SSE-QMC
one within the TSD core would lead to an overall area increase
of only 12%.

B. Delay

In comparison to the estimation of the metrics, the metric
computation causes a considerable increase of the critical
path delay. In order to avoid this, the SSE-QMC block has
been partitioned and pipelined according to the structure
presented in section VI-C. Each module has been individually
optimized during synthesis for its maximum clock frequency.
The resulting critical path delays are illustrated in Figure
13. The delay of the interference-reduction unit (IRU) is
additionally depicted, since it is affected by the redefinition
of the pipelining structure (section VI-C). In particular,the
delay obtained by applying different pipelining depthsP (with
P = {1, . . . , 4}) is illustrated (denoted by dashed lines). As
evinced here, even in the worst caseP = 1 (non-pipelined
circuit), the IRU delay is still slightly inferior than the design’s
critical path delay, originally defined by the SOCU block.
It can be hence concluded that the design’sfmax

clk will not
be affected by the proposed IRU’s retiming. As additionally
depicted, the delay of the SOCU block stays constant, whereas
the critical paths of the NEU and the MCU architectures
have been extended. In particular, the NEU’s delay has nearly
doubled and the MCU’s delay is approximately40% higher.
As a result, the MCU defines the critical path of the SSE-
QMC’s design, which is14% higher than that of the SSD-ME
circuit (determined by the SOCU block). This increment can
nevertheless be considered as irrelevant, since the longest path
delay (1.65ns) is still far from the target timing constraint
(2.2ns). The SSE-QMC block has been in fact successfully
synthesized forfmax

clk = 465MHz and, consequently, the
maximum clock frequency of the complete TSD-SSE-QMC
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Fig. 13. Delay of selected TSD-SSD-ME and TSD-SSE-QMC modules,
synthesized for the maximum achievable frequency in each case under typical-
case operating conditions.

module is not expected to decay below the original frequency
of the TSD-SSD-ME design (fmax

clk = 454MHz) [1].

C. Throughput and Energy

The normalized throughput and energy-per-bit correspond-
ing to the TSD-SSD-ME and TSD-SSE-QMC strategies are
depicted in Figure 14(a) for different values ofT , in a
non-iterative signal-processing scenario. The non-normalized
values are included for reference in Table 14(b). As evinced
here, the higher accuracy of the SSE-QMC approach allows
reducing the value ofT with respect to the SSD-ME strat-
egy. This benefit becomes especially noteworthy in the low
SNR regime. At e.g.,Eb/N0 = 13.4dB, the TSD-SSD-ME
approach requires a search tuple of sizeT = 64 in order to
meet the target error-rate (BER = 10−5), whereas a tuple size
T = 8 is sufficient in the case of the proposed TSD-SSE-QMC
strategy. This allows achieving a3.4 times higher throughput
while requiring only1/4 of the energy-per-bit. In the high
SNR regime (SNR > 13.5dB), the benefit of the TSD-SSE-
QMC approach is mainly restricted to the throughput gain
(≥ 40% increase), since the energy dissipation is in both cases
comparably low. For a particular throughput value (i.e., for
the sameT ), the proposed TSD-SSE-QMC detector presents
a performance gain of approximately0.4dB with regard to the
TSD-SSD-ME detection strategy.

D. Comparison to the State-of-the-Art

The most relevant and representative MIMO detector real-
izations reported to date in literature are listed for comparison
in Table II. The cost of input/output memories (i.e., on-chip
SRAM macrocells) has been removed from the gate count.
All hardware characteristics are presented as reported in the re-
spective works, whereas area-throughput and energy efficiency
have been scaled to 65nm andVDD = 1.2V according to the
scaling factorsS = reported tech.

65 andU = reportedVDD

1.2 (scaled
values are enclosed within brackets). It should be emphasized
that results from literature correspond to silicon implementa-
tions, while the results reported in this work correspond to
pre-layout synthesis of the proposed VLSI design. The TSD-
SSE-QMC detector has been configured withT = 8. The area-
throughput and energy efficiency can be nevertheless improved
with respect to this configuration by reducing the value ofT ,
as discussed in section VIII-C.
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T 1 2 4 8 16 32 64 256 512

S
S

D
-M

E SNR (dB) 16.3 15.3 14.4 13.9 13.7 13.5 13.4 13.3 13.3
τ (Mbps) 1360 855 538 333 209 130 88 53 40
E/bit (nJ/b) 0.12 0.19 0.30 0.48 0.77 1.24 1.83 3.03 4.05

S
S

E
-Q

M
C SNR (dB) 15.4 14.6 14.0 13.4 13.2 13.0 12.9 12.8 12.8

τ (Mbps) 1206 753 488 300 206 128 82 48 36
E/bit (nJ/b) 0.12 0.19 0.29 0.46 0.68 1.09 1.70 2.93 3.93

(b) Average throughput, energy-per-bit and SNR values.
Fig. 14. TSD’s average throughput and energy-per-bit.

The MIMO STS sphere detector (SD) proposed in [36]
represents the best-suited competitor for comparison against
the TSD-SSE-QMC realization, due to the high number of
algorithmic and implementation similarities. The much higher
throughput and considerably reduced area of the TSD-SSE-
QMC design results in a clearly superior throughput-area effi-
ciencyητ,A, which excels that of the contending circuit by fac-
tor ≈ 8, while doubling the energy efficiencyηE. As shown in
Table II, the efficiency of the proposed TSD-SSE-QMC design
is additionally comparable or even slightly superior than that of
other similar detectors from literature ([18], [37]). In contrast
to this, the pipelined hard-output K-Best detector of [38]
outperforms the efficiency of the proposed detector, but it is
not capable of incorporating and generating soft-information.
The best-first sphere detector (BeF-SD) proposed in [39], on
the other hand, doubles the gate count of the TSD-SSE-QMC
design. This system is dimensioned to support a higher MIMO
order (8×8), but can not processa priori information. Lastly,
an MMSE parallel interference cancellation (PIC) detection
approach is regarded for comparison. In contrast to the TSD-
SSD-ME circuit, the MMSE-PIC design integrates all the
circuitry required for channel pre-processing, includinga LU-
decomposition-based matrix inversion approach similar tothe
QR-decomposition required by the sphere detector. For the
sake of a fair comparison, the corresponding pre-processing
area penalty (68.1kGE [28]) is added to the gate count of
the TSD-SSE-QMC design, yet totalling nearly 40% of the
MMSE-PICs gate count. An additional disadvantage of the
PIC approach is that it presents nearly 3dB loss (in terms

of SNR) with regard to sphere detection8 in the non-iterative
case.

IX. CONCLUSION

The efficiency of the soft-input soft-output MIMO detector
proposed in this work has been shown to be superior than
that of several contending depth-first detector realizations,
while approaching the complexity of significantly less ac-
curate detection methods (such as K-Best and PIC detec-
tors). In contrast to the preceding TSD-SSD-ME approach
(which presents suboptimal performance and is practically
restricted to non-iterative receivers), the proposed TSD-SSE-
QMC strategy provides nearly optimal detection performance
in iterative scenarios (< 0.1dB loss with regardmax-log-
APP). Additionally, significant gains are provided, both in
terms of throughput (from40% up to a factor5) and energy
efficiency (up to80% energy saving in the low SNR regime).
The proposed approach represents hence a viable solution
for low-complexity MIMO detection, which avoids sacrificing
accuracy or performance.

REFERENCES

[1] E. P. Adeva, T. Seifert, and G. Fettweis, “VLSI Architecture for
MIMO Soft-lnput Soft-Output Sphere Detection,”in Journal of Signal
Processing Systems (JSPS), vol. 70, no. 2, pp. 125–143, February 2013,
dOI 10.1007/s11265-012-0709-z.

[2] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner,and
H. Bölcskei, “VLSI implementation of MIMO detection usingthe sphere
decoding algorithm,”IEEE Journal of Solid-State Circuits, vol. 40, no. 7,
pp. 1566–1577, Jul. 2005.

[3] C. Hess, M. Wenk, A. Burg, P. Luethi, C. Studer, N. Felber,and
W. Fichtner, “Reduced-Complexity MIMO Detector with Close-to ML
Error Rate Performance,” inACM Great Lakes Symposium on VLSI
(GLSVLSI), 2007, pp. 200–203.

[4] B. Mennenga and G. Fettweis, “Search Sequence Determination for Tree
Search based Detection Algorithms,” inProceedings of the IEEE Sarnoff
Symposium 2009, Princeton, USA, 2009.

[5] B. Hochwald and S. ten Brink, “Achieving near-capacity on a multiple-
antenna channel,”IEEE Transactions on Communications, vol. 51, pp.
389–399, 2003.

[6] B. Mennenga, R. Fritzsche, and G. Fettweis, “Iterative Soft-In Soft-Out
Sphere Detection for MIMO Systems,” inProceedings of the IEEE 69th
Vehicular Technology Conference, (VTC’09-Spring), Barcelona, Spain,
2009.

[7] M. Shah, B. Mennenga, J. Werner, and G. Fettweis, “Complexity Re-
duction in Iterative Soft-In Soft-Out Sphere Detection,” in Proceedings
of the IEEE 73rd Vehicular Technology Conference, (VTC Spring), 2011.

[8] T. Seifert, E. P. Adeva, and G. Fettweis, “Towards Complexity-Reduced
Soft-Input Soft-Output Sphere Detection,” inProceedings of the 9th
International ITG Conference on Systems, Communications and Coding
2013, (SCC’13), Munich, Germany, 2013.

[9] K. Nikitopoulos, D. Zhang, I.-W. Lai, and G. Ascheid, “Complexity-
Efficient Enumeration Techniques for Soft-Input, Soft-Output Sphere
Decoding,” IEEE Communications Letters, vol. 14, no. 4, pp. 312–314,
2010.

[10] C.-H. Liao, I.-W. Lai, K. Nikitopoulos, F. Borlenghi, D. Kammler,
M. Witte, D. Zhang, T.-D. Chiueh, G. Ascheid, and H. Meyr, “Combin-
ing orthogonalized partial metrics: Efficient enumerationfor soft-input
sphere decoder,” inInternational Conference on Personal, Indoor, and
Mobile Radio Communications (PIMRC), 2009, pp. 1287–1291.

[11] B. Mennenga, A. von Borany, and G. Fettweis, “Complexity reduced
Soft-In Soft-Out Sphere Detection based on Search Tuples,”in Pro-
ceedings of the IEEE International Conference on Communications
(ICC’09), Dresden, Germany, 2009.

8Measured atPER = 10% in a typical 40-MHz IEEE 802.11n scenario
with four spatial streams, a 16-QAM modulation, and a rate-1/2 convolutional
code over a TGn type C channel [28].

This document is a preprint of: E. Perez Adeva and G. Fettweis, “Efficient Architecture for Soft-Input Soft-Output Sphere Detection with Perfect Node Enumeration,” in
IEEE Transactions on Very Large Scale Integration Systems (VLSI), Mar 2016. DOI:10.1109/TVLSI.2016.2526904

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS,VOL. XX, NO. X, XXX 2015 13

[12] G. Caire, G. Taricco, and E. Biglieri, “Bit-Interleaved Coded Modu-
lation,” IEEE Transactions on Information Theory, vol. 44, no. 3, pp.
927–946, 1998.

[13] S. ten Brink, J. Speidel, and R.-H. Yan, “Iterative Demapping and De-
coding for Multilevel Modulation,” inIEEE Global Telecommunications
Conference (GLOBECOM), vol. 1, 1998, pp. 579–584.

[14] X.Li and J. Ritcey, “Bit-Interleaved Coded Modulationwith Iterative
Decoding Using Soft Feedback,”Electronics Letters, vol. 34, no. 10,
pp. 942–943, 1998.

[15] P. Robertson, E. Villebrun, and P. Hoeher, “A Comparison of Optimal
and Sub-optimal MAP Decoding Algorithms Operating in the Log
Domain,” in Proceedings of the IEEE International Conference on
Communications, 1995 (ICC ’95), 1995.
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This work Borlenghi Studer Studer Shabany Liao Studer
et al. [36] et al. [18] et al. [37] et al. [38] et al. [39] et al. [28]

2015a 2012b 2008c 2012d 2012e 2010f 2011g

Antennas 4× 4 ≤ 4× 4 4× 4 ≤ 4× 4 4× 4 ≤ 8× 8 4× 4
Modulation 64-QAM ≤ 64-QAM 16-QAM ≤ 64-QAM 64-QAM ≤ 64-QAM ≤ 64-QAM
Detector DF-SD DF-SD DF-SD DF-SD BF-SD BeF-SD MMSE

(TSD) (STS) (STS) (STS) (K-Best) PIC
Input/Output SISO SISO SO SO HO SO SISO
Performance close to close to close to close to close to closeto

mlAPP mlAPP mlAPP mlAPP ML mlAPP subopt.
Tech. (nm) 65 65 250 (65) 130 (65) 130 (65) 130 (65) 90 (65)
VDD (V) 1.2 1.2 - - 1.2 1.3 (1.2) 1.2
Area (kGE) 184 802 47 97.1 114 350 410
fmax
clk (MHz) 450 135 71 383 258 198 568

τ @ fmax
clk SO SO sustained sustained peaki peak

(Mbps) 300 194 10 92 620 431.8 757
ητ,A 1.6 0.2 0.2 0.95 5.4 1.2h 1.9
(Mbps/kGE) (0.8) (1.9) (10.9) (2.3) (2.6)
ηE (b/nJ) 2.17 1.1 - - 5.9 7.4h 4.0

(11.8) (16.2) (5.5)

TABLE II
COMPARISON OFMIMO DETECTORS ONCMOSAND THE VLSI DESIGN PROPOSED IN THIS WORK(VALUES IN BRACKETS RESULT FROM TECHNOLOGY

SCALING TO 65NM ).

HO - hard output / SO - soft output.
mlAPP - abbreviated form ofmax-log-APP.
a At BER = 10−5 (information block size of 9216b) over a Rayleigh fading channel, employing a 1/2-rate turbo decoder with 8 internal

iterations and random interleaving.
b At BLER = 1% (code block size of 1944b) over a Rayleigh fading channel, employing a 1/2-rate LDPC decoder with 10 internal iterations.
c At FER = 1% (frame size of 1024b), employing a 1/2-rate convolutional code with a soft-input Viterbi decoder and random interleaving.
d At BER < 10−5 over a TGn type C (frequency-selective) channel, employinga 2/3-rate convolutional code with a (soft-input) Viterbi

decoder and random interleaving.
e At BER = 10−3 (data packet size of 96b) over a Rayleigh fading channel.
f At BER = 10−5 (information block size of 9216b) over a Rayleigh fading channel, employing a 1/2-rate convolutional code and block

interleaving.
g At PER = 10% (packet block size of 864b) over a Rayleigh fading channel, employing a 5/6-rate convolutional code and block interleaving.
h Reported results correspond to a4× 4 MIMO configuration.
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