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Abstract—In this paper, we evaluate the effectiveness of
compressed-sensing-based channel estimation in LiFi orthogonal
frequency-division multiplex (OFDM) systems with multiple-
input multiple-output (MIMO). The sparseness of LiFi channels
suggests that it is beneficial to utilize compressed sensing which
has been investigated also for radio communications. In this
paper, we formulate the mathematical problem of compressed-
sensing for feedback generation in OFDM-based LiFi systems.
We use well-known algorithms for both, sparse pilot design and
sparse recovery and apply them to LiFi OFDM channels. We
evaluate the effectiveness of these algorithms by measuring the
achievable mean squared error (MSE) and vary the total numbers
of subcarriers as well as the number of pilot subcarriers.

Index Terms—LiFi, compressed sensing, channel estimation,
OFDM, MIMO

I. INTRODUCTION

LiFi is particularly suitable for Internet of things (IoT) appli-
cations in industrial and medical scenarios, because it operates
in the optical domain, which is robust against electromagnetic
interference. Unlike radio waves, which usually experience
rich scattering, optical propagation mostly uses the line-of-
sight (LoS). This simplifies some aspects of the system design
(channel estimation, feedback design, precoding). On the other
hand, other aspects such as potential blockage of the LoS
become more relevant.

To design a practical system, algorithms need to support
mobility, must therefore be processed in realtime, as blockages
can occur rather quickly, i.e. in few milliseconds. One of
the most challenging tasks is to design an effective feedback
scheme which has high performance and is technically feasible
at the same time.

LiFi systems use intensity modulation and direct detection
(IM/DD). In this way, the information is encoded in the
intensity of light and then retrieved through a photodetector
(PD) at the receiver. Nowadays, light-emitting diodes (LEDs)
are the commonly used emitters. In IM/DD, the modulated
light intensity must be non-negative and real-valued. With
good LED drivers, bandwidth can be up to few hundred MHz.
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Fig. 1. Channel impulse response of a typical LiFi system from the
standardization project IEEE 802.15.7. The channel length is L=73.

To reach Gbit/s, high spectral efficiency is needed which can
be realized by using OFDM in LiFi systems. OFDM allows
each subcarrier to contribute optimally by adaptive bit and
power loading.

As mentioned before, in IM/DD, the modulated light in-
tensity must be non-negative and real-valued. The common
method to obtain a real-valued signal, is to enforce Hermitian
symmetry on the subcarriers after inverse fast Fourier trans-
form (IFFT). The non-negativity condition can be satisfied by
several techniques. One of those methods is DC-biased optical
OFDM (DCO-OFDM) [1], in which a positive direct current
(DC) bias is added. Although this technique leads to increased
power consumption, it allows high spectral efficiency.

In communication systems, pilot symbols are usually
embedded into the data for channel estimation. In pilot-
based channel estimation for multiple-input multiple-output
(MIMO), orthogonal frequency or time domain training is
used to estimate each single single-input single-output (SISO)
channel [2] in parallel with others. In these methods, se-
lected subcarriers which are known by both transmitters and
receivers, are used for channel estimation. The pilot design
should be done carefully as it depends on the dynamics of
the channel. While pilot distances are commonly designed
based on Nyquist criteria, in case the channel is sparse, other
techniques can be used which results in less overhead.

The main assumption in the compressed sensing based chan-
nel estimation is that the channel can be represented in some



basis as compressible. In traditional Nyquist sampling, the
sampling rate must be at least twice as the highest frequency
component of the signal. But in compressed sensing, fewer
samples are needed, as they are proportional to the information
contained in the signal [3], [4]. The fact that the LiFi channels
mainly rely on the LoS (Figure 1), provide the possibility to
adopt compressed sensing techniques for channel estimation.

The pilot design plays a crucial role for compressed sensing
based channel estimation. The reason is that the measurement
matrix which depends on both, the pilot pattern and the
pilot amplitudes, dominates the estimation performance. It was
proven that random pilot patterns can be the perfect solution
for sparse channel estimation [5]–[7], but it is not practical for
realistic channel estimation [8], [9].

For SISO orthogonal frequency-division multiplex (OFDM)
systems, deterministic pilot designs have been studied inten-
sively [9]–[17] by using a uniform pilot power allocation. The
main focus is to find search strategies to obtain pilot patterns
based on some criteria, such as mutual coherence and its
modified version [10], [18], [19]. Among the search strategies,
the discrete stochastic approximation [11], [12] and a genetic
algorithm [16] attracted significant attention.

In [14], [20]–[22], pilot design for the multiple-input-single-
output (MISO) OFDM channel is studied based on mutual
coherence. The idea is to simplify the problem by using
orthogonal pilot patterns for different transmitters. Therefore,
the MIMO channel estimation problem is simplified to several
SISO channel estimation sub-problems. The second benefit
of this approach is to avoid mutual interference for different
transmitters during the channel estimation process.

Sparse recovery algorithms reconstruct a sparse signal from
undersampled measurements. These algorithms are classified
as convex relaxations, non-convex optimization and greedy
algorithms. Convex relaxations algorithms solve a convex
optimization problem. They use techniques such as projected
gradient, interior-point or iterative thresholding [23]. Non-
convex optimization techniques assume that the knowledge
about the signal distribution is known in advance. Based
on this knowledge, the signal can be recovered [24]. But
the computational complexity increases intensively [25]. An
example of the greedy algorithms is Orthogonal Matching
Pursuit (OMP). This algorithm tries to find the global optimum
by selecting a local optimum in each iteration. In [26], [27],
several variants of OMP are proposed.

Although the compressed sensing methods have been used
a lot in radio wave communication, their use is new in optical
wireless communication. In [28], [29], those methods were
utilized to estimate the channel in visible light communication
systems.

The main objective of this paper is a feedback scheme for
LiFi systems based on the above mentioned features. One of
the most critical parameters, related to the quality of such a
scheme, is the overhead. The overhead can be minimized by
optimized channel estimation and feedback provisioning. Our
focus in this paper is on compressed sensing based channel
estimation which has two parts. First, we consider the pilot-

based channel estimation for a multi-user MIMO-OFDM LiFi
system. Aiming at high performance, we allocate the pilots
for each transmitter at disjoint sets of subcarriers, yielding a
sparse pilot design. Thereby, the MIMO channel estimation
problem is simplified to multiple SISO channel estimation
problems. Next, we focus on decreasing the feedback overhead
by exploiting the intrinsic sparsity of LiFi channels, due to
the dominant LOS propagation. In mathematical language,
the channel is sparse or at least compressible in the Fourier
basis. This offers the opportunity to use compressed sensing
to estimate the channel with fewer measurements and lower
errors compared to conventional estimators used for radio
systems, where propagation is dominated by non-LOS.

II. PROBLEM FORMULATION

A. LiFi MIMO OFDM Channel Model

The following MIMO OFDM channel definition comes from
[30]. Consider a MIMO-OFDM system, in which the transmit-
ter and the receiver are equipped with nT LEDs and nR PDs,
respectively. Each LED uses N subcarriers to send its informa-
tion. For each LED, NP subcarriers are used as pilot to esti-
mate the channel at the receiver. The assigned pilot subcarriers
to the i-th LED are denoted as Pi = {Pi,1, Pi,2, ..., Pi,NP

},
with the assumption that 1 ≤ Pi,1 < Pi,2 < ... < Pi,NP

≤ N .
The LEDs use orthogonal pilots to be able to have interference
free channel estimation. The orthogonality of pilots in the
frequency domain means that Pi∩Pj = ∅ for 1 ≤ i ̸= j ≤ nT .
This assumption leads to changing the MIMO-OFDM channel
estimation into estimation of nT ×nR SISO-OFDM channels.
The pilot symbols transmitted by i-th LED are represented as
xi = [xi(1), xi(2), ..., xi(NP )]

T , which is received at j-th PD
as yj,i = [yj(pi,1), ..., yj(pi,NP

)]T . The channel input-output
relation between the i-th LED and the j-th PD is:

yj,i = XiFihj,i + nj,i. (1)

Here, hj,i is the channel impulse response between the i-
th LED and the j-th PD which is represented as hj,i =
[hj,i(1), ..., hj,i(L)]

T . Xi = diag{xi(1), xi(2), ..., xi(NP )}
is a diagonal matrix which its diagonal elements show the
pilot powers at the pilot subcarriers assigned to the i-th LED.
nj,i = [nj(pi,1), nj(pi,2), ..., nj(pi,NP

)]T shows the additive
white Gaussian noise (AWGN) at the pilot subcarriers assigned
to the i-th LED, which is modeled as nj,i CN(0, σ2INP

). Fi is
a discrete Fourier transform (DFT) submatrix whose elements
are defined as [Fi]n,l = e−j2πN(n−1)(l−1) for n ∈ Pi and
l ∈ {1, ..., L}. It is needed to say that here the DFT submatrix
is a modification of the DFT matrix by selecting only the
rows corresponding to the pilot subcarriers of the i-th LED.
Defining Φi = XiFi as the measurement matrix for the i-th
LED, the channel input-output relation (1) can be rewritten as:

yj,i = Φihj,i + nj,i. (2)

The LiFi channel impulse response typically has few taps
(Figure 1). Therefore, we assume that the channel hj,i is a
k-sparse vector of length L, meaning that hj,i has at most k



non-zero elements where k ≪ L. Therefore, the compressed
sensing theory can be applied for estimation of hj,i with
significantly less number of pilots than conventional methods.

B. LiFi MIMO OFDM Sparse Channel Estimation

Recall that in a MIMO OFDM LiFi system, using orthogo-
nal pilots for the channel estimation, the channel input-output
relation between the i-th transmitter and the j-th receiver can
be written as:

y = Φh+ n. (3)

To avoid confusion, we ignored i and j indices. The goal is
to find the sparsest h such that its mean squared error gets
sufficiently small. Mathematically it can be formulated as:

min∥ĥ∥0 s.t. ∥y − Φĥ∥22 < ϵ (4)

To allow h to be reconstructed uniquely from y it is required
that the measurement matrix satisfies the restricted isometry
property (RIP) [31]. The main issue with this condition is
that there is no polynomial time algorithm to check whether
a matrix satisfies RIP.

Definition 1: Matrix Φ has RIP, if:

(1− δ)∥h∥22 ≤ ∥Φh∥22 ≤ (1 + δ)∥h∥22 and δ ∈ (0, 1) (5)

Although checking the satisfaction of RIP for a matrix is
NP-hard, there exists an alternative condition to guarantee
the perfect reconstruction. This condition is based on the
coherence of the measurement matrix which is defined as the
maximum cross-correlations between its normalized columns.
Checking this condition is a feasible problem and therefore, it
is used in many sparse channel estimation problems.

Definition 2: For a given pilot pattern

p =
{
p1, p2, . . . , pNp

}
(6)

where 1 ≤ p1 < p2 < ... < pNP
≤ N , the coherence of the

measurement matrix Φ is defined as the maximum absolute
cross correlation between any pair of its different columns:

g(p) = max
0≤m<n≤L−1

|⟨Φ(m),Φ(n)⟩| =

max
0≤m<n≤L−1

∣∣∣∣∣∣
Np∑
j=1

|x(pj)|2 ωpj(n−m)

∣∣∣∣∣∣
(7)

Here, Φ(m) shows the m-th column of Φ and ω = e−j2π/N .
Theorem 1: The sparse vector h can be reconstructed

perfectly, if the coherence of the measurement matrix µΦ, is
less than 1/2k, where k is the sparsity of h [32].

Therefore, the pilot design problem can be explained math-
ematically as the measurement matrix coherence minimization
problem. Formally, it can be written as:

popt = argmin
p

g(p) (8)

Let’s assume that all OFDM pilot subcarriers have equal
powers:

|x(p1)|2 = |x(p2)|2 = · · · =
∣∣x (pNp

)∣∣2 = E. (9)

For simplicity, let c = n−m. Therefore:

g(p) = E · max
1≤c≤L−1

∣∣∣∣∣∣
Np∑
i=1

ωpic

∣∣∣∣∣∣ . (10)

III. SIMULATION FRAMEWORK

We use MATLAB to simulate the pilot designing and
channel estimating algorithms.

Sparse pilot
design

IFFT Add CP

Remove CPFFTSparse recovery

Channel

CIR

Fig. 2. Block diagram of the estimating system

In this paper we want to evaluate compressed sensing based
channel estimation methods in LiFi OFDM system. As it is
shown in Figure 2, the simulations start with sparse pilot
design for which we use the stochastic sequential search (SSS)
for SISO channels and modified version of SSS for MISO
channels from [14]. After that, we do IFFT and then add a
cyclic prefix to the signal. The lengh of the cyclic prefix is a
quarter of the OFDM symbol lenght. The next step is to send
the signal into the noisy LiFi channel. At the receiver side, we
do the reverse procedure. First we remove the cyclic prefix and
then do fast Fourier transform (FFT). In the last step, the OMP
sparse recovery algorithm is applied to the signal.

To evaluate the performance of the algorithms we plot the
MSE changes by SNR. During our evaluation, we show the
effect of total namber of subcarriers and total number of pilot
subcarriers on MSE.

Our channel model is based on the channel simulator
provided at HHI for LiFi system. We also do simulation for
other random sparse channels including 1-sparse 2-sparse and
other sparse channels.

In our simulation the total number of subcarriers is 128. We
also do comparison with the cases where the total number of
subcarriers are 256, 512, and 1024 to be able to see the effect
of the total number of subcarriers on the performance of the
algorithms.

As the baseline, we use linear estimator.
In all simulations, we assume the uniform pilot power

allocation, then the goal of the pilot designer is to find the



Pilot design SSS, SSS for MISO, CDS, Equally-spaced pilots
Recovery algorithm OMP, Linear estimator

N 128, 256, 512, 1024
NP 8, 16, 32, 64, 128
L 73

Sparsity 1, 2, 7, LiFi compressible channel
Cyclic prefix 1/4N
SNR range -5 dB - 25 dB

TABLE I
SIMULATION PARAMETERS

best possible pilot pattern based on the design criterion. The
simulation parameters can be seen in the table I.

We use the mentioned simulation framework to obtain the
results of the next section.

IV. RESULTS AND DISCUSSION

In this section we do our simulation based on SSS for pilot
design and OMP as the recovery algorithm. As a baseline, we
use the linear estimator as well as CDSs. In simulations, we
consider different sparse channels.

We start our analysis by evaluating the effect of the number
of pilot subcarriers NP on the MSE for a fixed number of
subcarriers N . Then we compare the results of SSS algorithm
and CDS to see efficiency of SSS. After that, we evaluate the
effect of N on MSE for a fixed number of NP . In the next
step, we analyze the effect of different initialization of pilot
sequence generator of SSS (different random start sequences),
on MSE. We do also such evaluation for a typical compressible
LiFi channel as well as some sparse random channels and
compare the effectiveness of SSS and OMP with different
equally-spaced pilot patterns and linear estimator. The last step
is to apply such methods for MISO channel and compare the
results and evaluate the fairness of the algorithms for different
LEDs.

A. The Effect of the Number of Pilot Subcarriers on the
Performance of SSS
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Fig. 3. Channel impulse response of a 2-sparse channel with L=73

Consider a 2-sparse channel as depicted in Figure 3. For this
channel, we want to compare the effect of selecting different
NP , on the performance of SSS for a fixed N which is 128.
We use OMP algorithm [18] for the channel estimation part.
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Fig. 4. The effect of NP on the MSE for SSS. N is 128 and NP = [8 :
10 : 128]

As we can see in Figure 4, by increasing NP , the MSE
decreases at each SNR. The reason is that using more pilot
subcarriers, provides more information about the channel and
therefore the estimation error decreases.

B. The Effect of the Number of Subcarriers on the Perfor-
mance of SSS

Consider again the 2-sparse channel as depicted in Figure
3. For this channel, we want to compare the effect of selecting
different N , on the performance of SSS for a fixed NP which
is 15. We use OMP algorithm [18] for the channel estimation
part.
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Fig. 5. The effect of N on MSE for SSS. NP is 15 and N = 128, 256, 512,
and 1024

It is obvious from the Figure 5, that different number of
subcarriers do not affect the MSE significantly.

C. The Effect of Different Stopping Criteria on the Perfor-
mance of OMP

OMP can have two different stopping criteria, e.g. sparsity
of its output or the residual level. In our previous simulations,
we used the sparsity as the stopping criterion of OMP. For
the 1-sparse channel, we used sparsity 1 and for the 2-sparse
channel, we used sparsity 2 as the stopping criterion of OMP.
In this subsection, we evaluate the effect of choosing different
stopping criteria on the performance of OMP.

In our simulations, we use a more realistic channel impulse
response which is provided by the LiFi channel simulator of



the Photonic Networks and systems department of Fraunhofer
HHI (Figure 1).

In our first simulation, we compare the effect of selecting
different sparsities as the stopping criterion for OMP. We
also compare them with the performance of a linear estimator
which uses equally-spaced pilots.
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In Figure 6, we can see at low SNRs, choosing sparsity 1
as the stopping criterion, outperforms higher sparsities. The
reason is that, at low SNRs, minor taps of the CIR are
at the noise level, but at high SNRs, those minor taps are
considerable in comparison with noise. Therefore, at high
SNRs, the minor taps cannot be ignored and must be estimated
by increasing the sparsity level of OMP, otherwise we have
error.

If we compare the results with the output of the linear
estimator with 8 equally-spaced subcarriers, it is obvious
that OMP with sparsity 1, almost outperforms it. If we also
compare it with the linear estimator which uses all subcarriers
as pilots, we can see that OMP with sparsity 1, outperforms
it at low SNR until 12.5dB.

In our second simulation, we use the more realistic stopping
criterion, that is, residual level. The reason to use this stopping
criterion, is that, we usually don’t have exact knowledge about
the channel sparsity at the receiver side. We also make a
comparison with the results of the linear estimator which uses
equally-spaced pilots.

In Figure 7, we can see the MSEs for different NP . If we
compare the results of this figure with the the Figures 6, we
can see the modification of the MSEs. It means that if we use
residual level as the stopping criterion for OMP, it selects a
sparsity at each SNR adaptively, such that it can result in the
best possible performance.

We can also see the comparison with the performance of
the linear estimator which uses all subcarriers as pilots.

D. Fairness of SSS for MISO

In this subsection, we want to evaluate the fairness of SSS
for the MISO channel. To have a good evaluation, we assume
that individual channels between each LED and the PD are
similar.
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Recall that we want to have orthogonal pilots for different
LEDs to be able to have interference-free channel estimation.
SSS for MISO, jointly solve the problem of finding pilot
patterns for all LEDs. Therefore, we can have some level of
fairness.

Consider a MISO channel with 4 LEDs, in which all
individual channels are random 7-sparse with the same channel
impulse responses. By using SSS for MISO, we find orthogo-
nal pilot pattern. At the PD, we utilize OMP as the estimator.
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Fig. 8. Comparision of MSEs of different transmitters in a 4-MISO channel,
for modified SSS. N is 128 and NP = 32. The stopping criterion for OMP
is the equality of the ℓ2 norm of the residual with the noise power.

We can see the MSE for different LEDs in Figure 8 for
the 4-MISO channel. By comparing them, we can see 2.5 dB
difference between MSEs of different LEDs. It is also needed
to say that SSS for MISO, gives 4 sets of non-overlapping
pilot patterns, each with the cardinality equals 32, such that
all 128 subcarriers are uses for pilots.

V. CONCLUSION

Although compressed sensing methods is widely studied in
radio communications, it is rarely used in optical wireless
communications. In this paper, we have used compressed
sensing to estimate the channel in a LiFi OFDM system.
We have selected SSS as an exemplary sparse pilot design
algorithm. As an exemplary sparse recovery algorithm, we



have chosen OMP. We have evaluated the effectiveness of
these methods by means of simulations. While increasing the
number of pilot subcarriers decreases the MSE, increasing the
total number of subcarriers does not affect the MSE signifi-
cantly. By comparing the compressed sensing based channel
estimation algorithm with the linear estimator using equally-
spaced pilots, we have observed that compressed sensing
brings sugnificant gains for LiFi OFDM systems. The MSE
decreases even though we use only few subcarriers. We have
also shown that using SSS for MIMO leads to fairness between
different optical wireless transmitters.
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