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Abstract—Positioning algorithms are designed based on lo-
cation related information contained in received signals, these
can be propagation delay, angle of arrival, and received power.
However, regardless of the positioning parameter, low-complexity
linear position estimators provide reliable and accurate results
only under line-of-sight propagation conditions. Hence, this paper
proposes an alternative position information parameter based
on the correlation of signals received at several sensing units.
A low-complexity convolutional neural network uses this novel
parameter for estimating the source coordinates. A simulated
indoor environment based on ray tracing has been employed to
compare the localization performance of the proposed approach
against classical positioning schemes under a common simulation
framework. The results indicate that an accurate yet low-
complexity positioning solution can be achieved in multipath
propagation scenarios where traditional schemes based on time-
difference-of-arrival and received signal strength usually present
limited performance. Furthermore, guidelines for selecting sys-
tem parameters that improve the positioning accuracy of the
proposed scheme are presented.

Index Terms—Positioning and localization, wireless sensor
network (WSN), deep learning, integrated sensing and commu-
nication (ISAC).

I. INTRODUCTION

Perspectives on the sixth generation (6G) of mobile com-
munications seem to agree on a strong interest on accurate
indoor positioning techniques, since it has a central role in en-
abling, for example, the connected intelligence concept, where
accuracy levels must be in the order of tens of centimeters
[1]. This trend can be attributed to the increasing number
of envisioned use cases in future wireless networks, where
location information can be exploited for enhancing network
services and the overall performance [2]. Still within the fore-
seen technologies in 6G networks, integrated communications
and sensing (ISAC) seeks to combine these two services by
employing techniques which allow the simultaneous use of
spectrum and hardware for either communications or sensing
tasks [3], [4]. Furthermore, location awareness can help to pave
the way towards proactive flexible radio resource management
by the network. Nevertheless, a set of challenges must be
addressed to achieve the envisioned integration between the
two services. These include: to develop a joint waveform
design and signaling protocol that can tuned to achieve both
sensing and communications performance requirements, and

to advance in the modeling of the wireless channel models
that are not averaged over the spatial domain, i.e., geometric
channel models.

The localization service of an active signal source can
be classified into two main categories: self-positioning and
remote-positioning. The first corresponds to the case where
a mobile device, i.e. a signal source, wants to know its
position within a global, or local, coordinate system. Hence,
it processes the signals incoming from several devices at
known locations for estimating its own position. In contrast,
remote-positioning often assumes a wireless sensor network
(WSN), where multiple sensing units (SUs) are connected to a
central unit (CU). The SUs collects incoming signals from the
sources(s), and send them to the CU, where source coordinates
are estimated. This work focuses on remote-positioning.

Our contributions can be summarized as follows: We present
an investigation of an alternative positioning technique which
exploits the synchronization among SUs for defining a posi-
tioning information feature named position information cor-
relation matrix (PICM). This feature is employed in a deep
learning (DL)-based localization approach, which is able to
outperform classical positioning techniques that rely solely on
received signal strength (RSS) or time difference of arrival
(TDoA) for source coordinate estimation. Throughout this
work the device to be localized is named source. The definition
of the PICM, and how the system sampling frequency and
transmit signal auto-correlation properties affect the posi-
tioning performance are explored. Recommendations for the
obtaining ideal values are also devised. The positioning per-
formance is investigated under a scenario whose propagation
effects are based on a ray tracing software, which provides
accurate spatial channel information.

The remainder of the paper is organized as follows: Section
IT presents the system model. Section III describes the main
contributions of the paper. Section IV analyses the perfor-
mance of the localization schemes under a ray tracing based
channel model. Finally, the paper is concluded in Section V.

II. SYSTEM MODEL

In an indoor area where the positioning service is to be
available, N clock synchronized SUs are placed in fixed
locations, and all are connected to a CU, thus forming a



WSN. The spatially distributed SUs listen to the channel for
a positioning preamble transmitted by the source device that
is to be localized. Once this preamble is identified, the SUs
send to the CU the in-phase and quadrature (I/Q) samples
corresponding to the preamble. Finally, the CU uses these
signals for source position estimation.

The band limited wireless channel model is defined as a
superposition of incoming signal components that traveled
through multiple propagation paths; and therefore, they arrive
at the receiver with different delays, amplitudes and phases.
Moreover, when either transmitter or receiver moves, or the
environment is modified, these quantities vary over time.
Therefore, the it can be represented as a time-variant low
pass filter from the receiver perspective [5]. Thus, the complex
baseband channel impulse response observed at the j-th SU
can be expressed by

L(t)—1
hi(t,7) = Y aut)d (t —7(t))exp (—j2nfen(t)), (1)
=0
where L(t) represent the total number of significant propa-
gation paths, «(t), 7;(t) represent the amplitude and delay
associated with the [-th path, respectively, f. denotes the
carrier frequency, and §(-) the Dirac delta function.

Equation (1) presents a continuous time formulation, but
in digital receivers the received signal is sampled at a given
sampling frequency fs = 1/Ts Hz, where T, is sampling
time interval in seconds, giving rise to the band limited
representation of the wireless channel. When the difference
between delays from propagation paths is smaller than Ty,
these are vectorially-combined into a single component. The
equivalent channel in frequency domain is given by

L1
Hi(k) = Z Qy exp (—jQﬂ'%fﬁz) exp (—j2nfem), (2)
=0

where H;(k) is the channel gain at frequency f. + % fs Hz,
and k € {—K/2, ..., K/2— 1} is the frequency bin index.
The time dependency has been dropped meaning that this
represents an instantaneous channel frequency response.

In summary, the wireless channel between source and SU
can be characterized by a combination of parameters, such
as oy and 7;, which are dependent on the positions of both
devices. In this case, the channel model in (2) is quite useful
for the numerical analysis of positioning systems, since it
allows us to explore the performance of different positioning
parameters under a common model. Furthermore, it gives us
the ability to investigate the effects of the bandwidth limitation
when the ray tracing software is used to obtain the exact path
delays, gains and phases.

III. CORRELATION MATRIX BASED POSITIONING
ALGORITHM
A. Mathematical Definitions

Let the Euclidean distance between the signal source and
7-th SU be defined as

d; = /(@ —2,)° + (y - u)", 3)

where the pairs (z, y) and (z;, y;) are the Cartesian coordi-
nates of the signal source and j-th SU, respectively.
Let
Z=[Zo(k), -+, Zn-a(k)] € OV )

be a matrix containing in each column
Zj(k) = H; (k)X (k) + W; (), Q)

which is a K-long complex-valued vector with the samples
of the received signal at the j-th SU in frequency domain.
H;(k) and X (k) are the channel impulse response and the
transmit signal in frequency domain, respectively, and W (k)
is additive white Gaussian noise (AWGN). Note that a periodic
transmission of a positioning signal is assumed, such that the
received signal z;[n] = h;[n] ® z[n] 4+ w;[n] has period N, =
K, where ® represents the circular convolution, and Nj is the
length of the transmit signal. Thus, the correlation matrix of
the received signals is given by

_ 1 m NxN
QfKZZE(C , (6)

where ()H represents Hermitian transpose [6]. Note that the
RSS (dBm) measurement at the j-th SU is obtained from the
diagonal elements as

Py =10log;, (1QJ;;) +30, )

where ['],; represents the matrix indexing operator. The PICM
is given by
Qricm £ 101og,, (1Q]) - ®)
Let the absolute differential source-SU distance between the
i-th and j-th SUs be represented by

Adij = ‘dl - dj|, ©

and the correlation spatial resolution be defined as
C

Ea

where ¢ is the speed of light and B = f, is the system
bandwidth.

R= (10)

B. Positioning Parameter Design

Assuming that the SUs are synchronized, as it is required for
TDoA-based positioning, the CU is able to coherently exploit
the position related information contained in the received
I/Q samples. Directly feeding the I/Q samples collected by
the SUs to a neural network would theoretically yield the
best positioning performance, since all the available location
information, i.e., ; and 7;, are contained in these raw signals.
Nevertheless, the dimensionality of the input, i.e., N X N4 X 2,
quickly demonstrates that this approach is unfeasible, and one
of the reasons is known as the curse of dimensionality [7],
which states that the number of training examples required
for obtaining a well-fitting model grows exponentially with the
input size. Hence, we propose to represent the source location
with the PICM, which reduces the input dimensionality to
N x N, but still maintains more information when compared
to solely employing RSS or TDoA.
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Fig. 1: Normalized correlation between the received signals
at the ¢-th and j-th SUs as a function of Ad;;. The spatial
resolution is indicated by the dashed line, where B = 50 MHz,
and a Zadoff-Chu sequence is employed as transmit signal.

The choice of transmit signal plays a role on the PICM
representation ability. Ideally, the discrete-time autocorrelation
function of the positioning pilot signal should be a Kronecker
delta function. This can be achieved with cyclic transmission
of spreading sequences, but cannot be attained in the aperiodic
case [8]. Zadoff-Chu sequences are a good example of such
sequences, and they are well-known for being employed as a
pilot signals in multiple wireless communications standards.
Hence, these are employed in this paper as positioning pilot
signal. For N, even, the sequence is given by

zzc [n] = exp (j7rn2/NS) , 11

where N is the length of the sequence. Figure 1 shows the
normalized correlation between the received signals at the i-th
and j-th SUs as a function of Ad,; assuming this sequence
as positioning pilot signal.

As aforementioned, the j-th SU RSS is obtained via (7).
However, further location information other than the RSS
is found in the off-diagonal elements of the PICM. Two
distinct patterns appear in the matrix depending on the relative
position of the source with respect to the SUs. First, when
Ad;; = 0, i.e., the source is equidistant to a pair of SUs,
the signals received by the i-th and j-th SU yield maxi-
mum correlation. Moreover, assuming an idealized noiseless
propagation condition with perfect omnidirectional antennas,
[Q];; = [Ql;; = [Ql;;- Second, the received signals at the i-th
and j-th SU yield minimum correlation when Ad;; = mR,
ie., [Q}ij ~ 0, where m € 7Z* is a nonzero integer, but
equality holds if the transmit signal has an Kronecker delta
function as its discrete-time periodic autocorrelation function.
These two cases are illustrated by Fig. 2, which shows the
map of a WSN with a single active source in Fig. 2a, and the
corresponding absolute value of the correlation matrix with
diagonal entries normalized to the unity in Fig. 2b.

As it is readily apparent, the performance of a positioning
algorithm using the PICM as its input will be directly related
to its information level, which in turn depends on the system
bandwidth, spatial arrangement of the SUs, and the transmit
signal correlation characteristics. The highest information level
stemming from the off-diagonal elements of PICM arises when
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Fig. 2: Scenario illustrating that maximum correlation is ob-
served in off-diagonal elements that corresponds to Ad;; = 0,
and minimum correlation is observed when Ad;; = mR. For
the sake of visualization, B = ¢/Ads 12 Hz, and a pure line-
of-sight (LoS) channel was assumed between the source at
[5.5, 5.5] and SUs.

the source is located at points where 0 < Ad;; < R from the
perspective of most SUs. Thus, assuming fixed SU placement,
there is an average differential source-SU distance denoted
by Ad;; = E[\dz - dj”, which can be obtained for each
environment, and it depends on the location of the SUs and
possible locations where the source may be. The average
differential source-SU distance can be used for calculating the
system bandwidth that maximizes the positioning information
of the correlation matrix as
C

Bpos = Ad,, )
which ensures that on average the PICM values are within the
first lobe of Fig. 1.

(12)

C. Neural Network Architecture

Given the two dimensional image-like structure of the
PICM, a convolutional neural network (CNN) architecture is
employed for estimating the source location. The CNN takes as
input the absolute value of the correlation matrix in logarithm
scale, which is here defined as the PICM. The complete list
of the architecture hyperparameters employed are presented in
Table I, and the network architecture is illustrated in Fig. 3b.

Figure 3a shows the training history, where 3200 training
examples are employed for training. Detailed description of
the training data is given in section IV-B. It can be observed
that a well fitting model is obtained with approximately 300
epochs.

IV. PERFORMANCE EVALUATION

A. RSS- and TDoA-based Positioning Algorithms

1) DNN-RSS: This approach has been proposed in our
previous work [9], and further investigated with measurement
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Fig. 3: Proposed CNN architecture and mean squared error (MSE) loss as a function of training epochs for training and

validation data sets.

TABLE I: Proposed CNN architecture hyperparameters

TABLE II: Simulation parameters

Hyperparameter Value

Architecture Convolutional and FC

Number of convolutional layers 3

Number of kernels 64, 32 and 16

Kernel sizes (5,5), (3,3) and (3, 3)
Padding Valid

Pooling Average (2, 2)
Number FC layers 2

Number units per FC layer 128, 128

Number of trainable parameters ~ 60,000

Validation split 80% training, 20% validation

Mini batch size 40

Regularization parameter (L2) 0.01

Activation function ELU

Early stop patience 100

Optimizer Adaptive moments (Adam)
Learning rate 1073

Loss function MSE

Weight initialization Glorot Normal

data [10]. The neural network architecture employed is a fully
connected neural network with three hidden layers that takes
as input the RSS measurements from the N SUs.

2) NLS- and LLS-TDoA: TDoA is the difference between
time of arrival (ToA) estimates at a pair of SUs, where ToA
corresponds to the delay that the signal emitted by a source
takes to reach a given SU. In scenarios with non-line-of-
sight (NLoS) propagation conditions, the performance of delay
estimation algorithms suffers with a positive bias, i.e., the
estimated delay is greater than the true delay. In turn, the
accuracy of time-based positioning schemes is degraded in
comparison to LoS conditions.

The nonlinear least squares (NLS) and linear least squares
(LLS) estimators using TDoA ranging as input are described
in [11] in the chapters 3.3.1.1.B and 3.3.2.1.B, respectively.
In this work, the NLS is implemented via grid search with a
resolution of 5 cm.

Parameter Value
Area size 20 x 20 m?
Source height 1.5 m
SU height 35 m
Number of SUs (V) 16 (Fig. 2a)
Average differential ~ 6.042 m

source-SU distance (Ad;;)
Positioning bandwidth (Bpos)
Average SNR

Transmit signal

~ 49.6059 MHz

20 dB

Zadoff Chu (Eq. (11))
Transmit signal length 256 samples

Transmit and receive antenna - .
.. Omnidirectional
radiation pattern

Frequency of operation (f.) 3.75 GHz
Path loss exponent of each ray 2
Maximum number of ray interactions 3

(reflection & diffraction)
Number of propagation paths 20
Training set size 3200 examples

Test set size 3200 examples

B. Channel Model & Simulation Parameters

In order to understand how the proposed scheme performs,
and how does it compare against pure RSS- and TDoA-based
techniques, a simulation environment has been built using
the ray tracing tool Altair WinProp™ [12], and the numeric
computing software MATLAB™. The ray tracing tool allows
the creation of channel impulse responses that are naturally
associated with unique source locations. Therefore, positioning
parameters, e.g., RSS and TDoA, can be obtained from a
signal that has been subjected to the same channel impulse
response and SNR.

WinProp outputs the propagation paths between transmitter-
receiver pairs with a given maximum number of wave interac-
tions for specific positions within the simulated environment,
where the reflectivity coefficients dependent on electric prop-
erties of the construction materials are taken into account. The
area is modeled with concrete floors, brick walls, metal roof,
and its dimension is 20 by 20 meters. The area dimensions



similar to a factory hall, where sixteen SUs are positioned
following the illustration on Fig. 2a. The propagation paths are
calculated at a finite number of positions across the room with
a resolution of 0.25 m between adjacent points, which equates
to 6400 distinct positions within the area. At each simulation
run, one static signal source is generated with coordinates
randomly drawn from the 6400 positions without replacement.
For training and testing, the entire data set is split into two
independent data sets with 3200 points each. WinProp outputs
the propagation paths as vectors, which contain the gains,
delays and phases associated with a pair of source and receiver
locations. The propagation path vectors are then processed by a
MATLAB script that calculates the bandlimited received signal
at the j-th SU with (5), where the transmit signal is a Zadoff-
Chu sequence with 256 samples, and the bandlimited channel
frequency response is obtained via (2). The complete list of
simulation parameters is shown in Table II.

Two distinct evaluation scenarios have been devised, namely
static and dynamic. In the static setup, besides AWGN, no
other source of signal perturbation or distortion is taken
into account. Therefore, the performance of the positioning
algorithms is affected chiefly by the multipath propagation
effects in high SNR regime. The dynamic setup extends the
static scenario by weighting each propagation path with a
complex normally distributed gain £ ~ CA (0, 1) for modeling
random signal attenuations that come from occasional path
blockage due to moving obstacles within the environment.
Hence, each path amplitude becomes Rayleigh distributed and
each path phase is randomly rotated following a uniform
distribution between 0 and 27. This setup is inspired by
the stochastic models often employed in the investigation
of wireless communications systems, where agreement with
measurements have long been reported in the literature [13].

The proposed CNN-PICM technique is compared against
(i) deep neural network (DNN)-RSS [9], [10], (i) LLS-TDoA,
and (iii) NLS-TDoA [11].

C. Static Environment

Figure 4a presents the positioning performance by showing
the root mean squared error (RMSE) of the source coordinates
as a function of the bandwidth. In this case, one CNN/DNN
model was obtained for each bandwidth point, where Fig. 3a
shows the training progress of the CNN-PICM approach
for B = Bjo. Both NLS- and LLS-TDoA improves with
increasing bandwidth, since it directly relies on correlation for
TDoA estimation, which is in turn limited by the correlation
spatial resolution. However, the superior performance of NLS
against LLS comes with the cost of impractical computational
complexity for realtime deployment. Similarly, DNN-RSS
performance also improves as the system bandwidth increases,
since the RSS variation resulting from multipath fading is
reduced due to the decreasing correlation among propagation
paths. As discussed above, CNN-PICM has an ideal operation
bandwidth that maximizes the representation of the source
position in the correlation matrix, this value is highlighted in
the plot. For values where B < Bj,,s, CNN-PICM and DNN-

RSS have similar performance, since the signals received at
all the SUs are highly correlated, and the PICM does not
contain extra information in the off-diagonal elements. For
B > Bpos, CNN-PICM and DNN-RSS also show similar
performance, however, in this case the correlation among the
received signals decays rapidly due to the large bandwidth,
and effectively all received signals are highly uncorrelated,
and again the PICM does not contain extra information in
its off-diagonal. In both situations CNN-PICM still relies
on the location information contained in the main diagonal,
which corresponds to the RSS. Hence, the similar performance
between CNN-PICM and DNN-RSS.

Figure 4b shows the CDF of the positioning error with
operation bandwidth given by (12). Giving yet another per-
spective, Fig. 4c shows the relation between the SNR and
the positioning error, this result indicates that the proposed
approach performs well under moderate SNR regime, i.e.,
greater than 10 dB.

D. Dynamic Environment

Figures 5a and 5b are obtained under the dynamic simula-
tion setup. In this case, the training process is not repeated, so
the DNN and CNN models trained with the data set from the
static environment are employed. As expect, the performance
of all schemes deteriorates due to the assumption of random
movement within the area. Comparing the results from the two
simulation environments it can be noted that DNN-RSS perfor-
mance remains unaffected by an increasing system bandwidth,
since the power fluctuations are now a combined effect from
multipath fading and the additional random signal blockage
modeled by &. On the other hand, NLS- and LLS-TDoA
still shows improving performance as the system bandwidth
increases, since it relies on the correlation among signals
received at the SUs for TDoA estimation, which in turn is
not heavily influenced by power fluctuations, but rather by
the signal correlation characteristics and the spatial resolution.
Moreover, this result shows that despite the random signal
fluctuations, CNN-PICM is able to exploit the correlation
patterns when the system bandwidth is properly selected, i.e.,
following (12). Nevertheless, its performance degrades as the
bandwidth increases, since in that operating region the source
position information is understood to be the RSS contained
in its main diagonal. At B = B,,s CNN-PICM presents
performance comparable to LLS-TDoA, however requiring
about 20 times less bandwidth.

V. CONCLUSION

In this paper, the CNN-PICM positioning approach is pro-
posed. The scheme employs a CNN to estimate the source
coordinates using as input the position information correlation
matrix (PICM) obtained from the received signals at spatially
distributed and synchronized SUs. Guidelines on how to max-
imize the PICM positioning information are presented, which
are related to the sampling frequency, i.e., system bandwidth,
and the auto correlation function of the positioning pilot signal.
The performance of the proposed approach is investigated
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Fig. 5: Performance under the dynamic simulation scenario.
Plot (a) shows the RMSE of the estimated sources coordinates
as a function of the bandwidth with SNR = 20 dB; (b) shows
CDF of the positioning error with SNR = 20 dB and B =
Bpos = 49.61 MHz.

using a ray tracing tool. The results give support to the idea
of a DL-based technique being able to push the performance
of indoor positioning techniques beyond what is currently
possible with traditional localization parameters, such as RSS
and TDoA, and low complexity estimators, such as the LLS.
The proposed approach is able to deliver accurate positioning
while being low-complexity and requiring relatively narrow
bandwidth. Investigating the proposed approach with real
world data is an important next step. Nevertheless, future
theoretical studies should also investigate the feasibility of
extending the PICM to a three dimensional tensor containing
in each page a correlation matrix calculated with different time
shifts.
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