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Abstract—Ultra-Reliable Low-Latency Communications
(URLLC) is a prerequisite for advancing industrial automation.
To verify whether communications systems meet these stringent
requirements, physical layer simulations are a powerful tool.
Such simulations rely on a large number of channel realizations
to obtain statistically significant results. Using exclusively
real-world measured channels is challenging, e.g., due to the
measurement time needed. In this work, we propose how to
derive a channel model that mimics not only the mean but
equally the temporal behavior of data from an industrial
channel measurement campaign. The approach considers time
variation on a large scale, modeled through a Markov process,
as well as fading of individual channel components, achieved
through Doppler-filtered random processes based on empirical
distributions. The model is validated in link-level simulations by
comparing the synthesized channels to the original measured
data by means of performance metrics relevant to URLLC,
including mean and maximum outage durations. Our validations
show that the model performs well and especially the outage
durations, caused by consecutive packet losses, match the real
channel characteristics very well. In the future, we can use
the model to investigate how extensive measurements need
to be in order to make statements about the performance of
communications systems.

Index Terms—Channel Modeling, Radio Channels, Time Vari-
ation, Industrial Communications.

I. INTRODUCTION

Ultra-Reliable Low-Latency Communications (URLLC) is
considered to have a key role for automation applications
coming up with future industrial processes [1]. Above all, a
high reliability of the communications system is essential in
order to maximize the availability of industrial applications,
and thus to avoid downtimes. From an URLLC application
point of view, high reliability can be achieved by extremely
low Packet Error Rates (PERs) [2]. However, if the application
can tolerate occasional packet errors or if one takes the mission
duration of those applications into account [3], high reliability
in the sense of the application is not necessarily bound to
the PER. That is why new dependability metrics are studied
for assessing the reliability of URLLC applications, which
consider consecutive packet losses and thus the temporal
correlation of fading processes and outages [4].

In general, link-level simulations are a first step to investi-
gate the reliability of a communications system, e.g., in [5].
However, the credibility of simulation results strongly de-
pends on the considered radio channel model. Using measured
channel data from representative environments in the form
of playback simulations would be beneficial for the value of

reliability studies. Unfortunately, the pure measurement time
required for this would be enormous. Assuming the most
relaxed requirements of a closed-loop control application from
[6], one needs a PER of 10−8 with a transmission interval
of 2ms. To theoretically achieve this accuracy, at least 108

packets have to be simulated. With one packet every second
millisecond, the channel has to be recorded consecutively
for more than 2 days. To nevertheless make comprehensive
simulations feasible, channel models have to be derived from
the available measurement data. In this context, the question
arises what kind of modeling approach is meaningful.

To investigate the temporal occurrence of packet errors by
simulations, a channel model needs to reproduce the behavior
of the available measurement data, including correlations in
time at the scale of communications packets as well as on the
large scale. However, to the best of our knowledge, campaigns
measuring the channel with mobility for several seconds with
a temporal resolution of milliseconds are scarce, especially for
industrial indoor environments (see literature overview in our
previous work [7]). This fact is also reflected in the number
of channel models focusing on modeling temporal variations
based on industrial channel measurement data. The authors in
[8] present a model for time-varying indoor office channels.
Time variation is achieved by using a Markov process to
model the appearance and disappearance of taps in the channel
impulse response (CIR). However, parameters are derived for
Line of Sight (LOS) and Non-Line-of-Sight (NLOS) areas
separately with no transition between them. Similar to [8], the
existence of multi-path components in the CIR is modeled with
a Markov process in [9], but the authors in the latter emphasize
the importance of considering transitions between LOS and
NLOS. In [10], an industrial channel model, combining a Path
Loss (PL) model and a model for small-scale fading, has been
parameterized based on measurement data for LOS and NLOS
separately. However, the fading parameters of the taps in the
CIR do not change over time and changes from LOS to NLOS
are not considered either.

To fill this gap, we present a data-driven channel model
that synthesizes new channel realizations reproducing not only
the statistical behavior of the measurement data but also
its correlation in time and frequency. Therefore, measured
data is actively incorporated in the form of measured distri-
butions. The model reproduces the evolution of large-scale
properties, e.g., the Excess Delay (ED), with a state-based
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Markov chain to allow for smooth changes of large-scale
conditions. On a small scale, the time variation of individual
channel realizations is modeled by synthetic fading based on
measured fading distributions. The validation of the model
relies on a comparison of link-level simulation results between
the measured data and synthetic channel data generated by
our model. By evaluating the PERs as well as mean and
maximum number of consecutive packet errors, we show that
the proposed modeling mechanisms are sufficient to mimic the
simulation results of the measurement data.

II. MEASUREMENT DATA

The underlying data used in this work originates from an
industrial channel measurement campaign, described in detail
in [7]. The measurement environment provided an industry-
typical and thus rich scattering with strong multi-path propaga-
tion, leading to frequency-selective radio channels. In addition,
the receiver was attached to a moving Automated Guided
Vehicle (AGV). The resulting relative movement between
transmitter and receiver during the measurements caused the
measured channel to vary over time. The AGV had a constant
velocity of 1m/s, following a reproducible trajectory on a
rectangular round. The measurement campaign consisted of
10 scenarios each differing in terms of obstacle positions. In
this work, we focus on the machines scenario shown in [7].
The trajectory of about 20 s of driving time covered varying
transmission distances as well as varying LOS conditions.
The bandwidth of the utilized channel sounder was set to
fS = 100MHz at a carrier frequency of fC = 3.75GHz. Due
to the deterministic velocity v and fC , the expected coherence
time TCoh of the channel can be estimated using [11]:

TCoh ≈ 9c

16πvfC
= 14.3ms . (1)

With one measured CIR per millisecond, the time between
consecutive measurement points was clearly below the coher-
ence time. The used bandwidth combined with a high temporal
measurement rate allowed us to capture both the frequency and
time selectivity of the channel.

III. MODELING

A. Assumptions

Based on the measurements, we determine assumptions
concerning a single CIR. First, we assume that there is a
start sample in the CIR that indicates the first arriving channel
component. Second, samples in the CIR having an amplitude
less than a certain fraction of the maximum amplitude of
the CIR are assumed to be irrelevant. Thus, there is an
end sample and the CIR has a finite length of N samples
between start and end point. The density of physical scatterers
in the considered environment is high with respect to the
sampling frequency and hence to the resolution of resolvable
physical paths. We additionally assume the scatterers to be
uncorrelated, i.e., in this work, all N samples between start
and end point are considered as independent multi-path taps.
This assumption seems severely simplifying and contrasts
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Fig. 1: A typical NLOS CIR from an industrial measurement cam-
paign indicates multi-path propagation. The start and end of the CIR,
as well as two exemplary EDs, are depicted.

with [8], [10], where samples of the CIR are grouped into
clusters. However, because of the high density of scatterers,
the amplitudes of the samples are assumed to originate from
the sum of several multi-path components and hence to be
subject to fading [11]. That is, according to the Tapped Delay
Line model in [11], the CIR

h(t, τ) =

N(t)−1∑
n=0

cn(t)e
jϕn(t) · δ(τ − τn) (2)

can be interpreted as a time-varying Finite Impulse Response
(FIR) filter including N(t) channel taps with its time-varying
amplitudes cn(t) and phases ϕn(t) and its corresponding de-
lays τn. Thereby, δ(·) corresponds to the Dirac delta function.
By assuming that samples in the CIR are equal to taps, the
delays τn are fixed and equal to n/fS. The number of taps
N(t) varies over time due to changing large-scale conditions.

To determine the start and end point, a threshold compared
to the maximum power of the CIR is used. The sample that
is considered as start point is the first sample with a power
higher than ∆Start [dB] below the maximum power. Similarly,
the end point is found by looking for the last sample with a
power higher than ∆End [dB] below the maximum power. For
our measurement system, we found that ∆Start = 10dB and
∆End = 30dB work reasonably. While these parameters are
relative and therefore applicable to other physical measurement
scenarios, they still depend on the measurement hardware and
may need to be tuned for other systems. An exemplary CIR
from the measurements including the determined start and end
points as well as ∆End is shown in Fig. 1.

Further, we infer assumptions that concern consecutive
CIRs. Even if single taps in the CIR are subject to fading,
the time between consecutively measured CIRs is below
TCoh. That means, large-scale characteristics such as the mean
receive power as well as LOS conditions are assumed to be
constant for a certain number of consecutive CIRs. Those
characteristics change on a time period larger than TCoh.
Accordingly, we assume that consecutive CIRs can be arranged
into segments of length TSeg > TCoh as done in [9] (see Fig.
2). Segments are characterized by large-scale parameters that
are assumed to be constant within one segment.

This document is a preprint of: F. Burmeister, N. Schwarzenberg, A. Trassl et al., “Data-Driven Channel Modeling for Industrial URLLC-Motivated PHY Investigations,” in
Proceedings of IEEE Wireless Communications and Networking Conference (WCNC 2022), Austin, USA, Apr 2022.

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



State 4 State 5 State 6 State 5 State 4

TSeg

t

τ τ τ

|h
(τ
)|

|h
(τ
)|

|h
(τ
)|

Fig. 2: Consecutive CIRs are divided into segments of length TSeg.
Amplitude distributions are represented by box plots in the CIRs.

B. Large-scale Modeling
The goal of the large-scale modeling is to classify segments

and extract probabilities for their occurrence in order to
synthesize new segment time series. The Excess Delay (ED)
seems to be a suitable parameter to distinguish segments. On
the one hand, it changes with the large-scale conditions [12].
On the other hand, the ED is a metric that indicates the number
of relevant taps in a CIR. This is meaningful for the synthesis
of CIRs to reduce the number of taps to be modeled to the
most relevant ones. In particular, we define EDX ≤ N as the
number of necessary samples to exceed an arbitrary fraction
X of the CIR energy. This can be expressed by

EDX−1∑
l=0

|h(τ − τl)|2
!
≥ X

N−1∑
l=0

|h(τ − τl)|2 . (3)

Thereby, the ED can be understood as measure of significance.
Samples in a CIR that are incorrectly considered as taps, e.g.,
due to an unfavorably tuned ∆End are thus ignored, making
the modeling more robust. Figure 1 indicates that 99% of the
energy within this CIR is accumulated already after a fraction
of the N samples. The determined excess delays EDX(t) are
averaged segment-wise and rounded to an integer number of
samples. This numerical value per segment is defined as state
index S, indicating to which state this segment belongs. The
state series observed during a measurement round is visualized
in Fig. 3. One can see the states depending on the transmission
distance (increasing state index with increasing distance) as
well as on changing LOS conditions. In the areas with higher
state indices (from 6 s to 10 s and from 11 s to 14 s), the LOS
was blocked by two metallic obstacles.

Due to segmentation with subsequent labeling of the seg-
ments, the state index S representing the large-scale conditions
lies in a finite state space. To characterize and model the
evolution of states, a Discrete-Time Markov Chain (DTMC)
is used. Therefore, the overall state probabilities as well as
the state transition probabilities have to be extracted from the
measurements. The goal is to use the obtained probabilities to
model synthetic large-scale state time series later on.

For modeling time series, we want to dispense with the
classical Markov property, meaning that the next state Sn+1

solely depends on the current state Sn. Instead, a Markov
chain with a memory of M steps is considered in order to
allow for the synthesis of state sequences that are similar to
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Fig. 3: Applying segmentation and ED-based state labeling to an
exemplary measurement round shows the resulting state sequence
over time. The distance between transmitter and receiver is plotted
on top and shows how state and large-scale conditions are related.

measured time series. That is, the next state Sn+1 depends on
M + 1 states in total, i.e., it depends on the state sequence
(Sn, Sn−1, ..., Sn−M ). To obtain the overall probability for
a specific sequence, we count the number of occurrences of
this sequence and divide it by the total number of sequences
in the measurements. The overall probabilities are necessary
to know for the beginning of the synthesis procedure, i.e.,
to randomly choose a starting sequence. More important are
the transition probabilities for the next state Sn+1 based on
a specific sequence. To obtain this transition probability, we
count the number of occurred changes into the state based on
this specific sequence and divide this by the total occurrence
of this particular sequence. Since the state space is finite,
all transition probabilities can be represented by a (M + 2)-
dimensional probability tensor T . For M = 1, the (i, j, k)-th
element of T is

pijk = Pr(Sn+1 = i|Sn = j, Sn−1 = k) (4)

and gives the probability for entering state i, if the current state
is j and the previous state was k. The size M of the Markov
chain memory can be interpreted as a hyperparameter. Note
that having no correlation between states, i.e., M = 0, might
end in inaccurate time variations the channel model produces.
Choosing M very high removes the randomness from synthetic
state series.

After obtaining the overall state probabilities and the state
transition probabilities from the measurements, we are inter-
ested in synthesizing random state series. The starting point is
a randomly selected sequence of length M + 1. Thereby, the
current state sn and the M previous states are given. From T ,
all probabilities for the next possible states sn+1 are known,
i.e., we can construct the discrete Probability Density Function
(PDF) fSn+1

(sn+1) for the next occurring state. To randomly
draw the next state according to the probability densities
in fSn+1(sn+1), Inverse Transform Sampling (ITS) is used.
This allows to sample randomly from a certain PDF given
its Cumulative Distribution Function (CDF). By accumulating
the individual probabilities in fSn+1

(sn+1), one obtains the
discrete CDF FSn+1

(sn+1). The inversion of the CDF and a
random sample u from a uniform distribution U ∼ Unif[0, 1]
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allows to draw random values from fSn+1
(sn+1). That is, the

next state of the synthetic time series results from

sn+1 = F−1
Sn+1

(u) . (5)

The new state is appended to the synthetic time series and the
procedure repeats until a desired length of the time series is
reached. For more details about ITS, please refer to [13]. In
this work, we always consider ITS to be used if a random
sample has to be drawn from a specific (measured) PDF.

C. Small-scale Modeling

The state indices given by the large-scale modeling de-
termine the fading parameters of a segment, but not the
individual fading realizations. That is why we need a small-
scale modeling layer dealing with the generation of CIRs
and their small-scale variations. After dividing the measured
CIRs into segments and classifying them based on EDX , we
need to collect statistical amplitude distributions. In [14] is
shown that recurring characteristics of CIRs occur in industrial
environments. Inspired by this, we propose to merge amplitude
distributions of all CIRs from segments with the same state
index. This is illustrated with the help of Fig. 2. From
these distributions, we aim to generate concrete CIRs during
synthesis. If time-varying CIRs have to be synthesized, two
questions arise. First, how many taps have to be considered in
the delay domain? Second, how to model the amplitudes cn(t)
and phases ϕn(t) per taps and their temporal behavior?

As described in III-B, the EDX is calculated per CIR.
We determine the number of taps to be modeled in a CIR
of one state differently from the classification for large-scale
modeling by determining the maximum EDX occurring from
all segments of that state. To address the second question, the
focus first lies on the amplitudes before the modeling of the
phases is discussed later. We propose to split the amplitude
cn(t) of delay index n into a constant mean amplitude c̄n and
a time-varying fading amplitude c̃n(t) such that:

cn(t) = c̃n(t) · c̄n (6)

The empirical PDFs fC̃s,n
(c̃s,n) and fC̄s,n

(c̄s,n) for generating
the above amplitude components during synthesis must first be
obtained from the measurement data. To collect the amplitudes
for the empirical PDFs, we start with the first segment which
belongs to a certain state s according to the classification
introduced in III-B. Now, for a single delay index n, the mean
amplitude c̄n is computed and put into the respective PDF
fC̄s,n

(c̄s,n). For the same delay index n, the amplitudes cn(t)
of this segment are normalized to the previously determined
c̄n such that the fading amplitudes

c̃n(t) =
cn(t)

c̄n
(7)

result. These fading amplitudes are put into the data collection
for fC̃s,n

(c̃s,n). This is repeated for all delay indices in this
segment. After that, the next segment is evaluated and the
amplitudes are put into the respective data collections to obtain

fC̄s,n
(c̄s,n) and fC̃s,n

(c̃s,n) depending on the state of the next
segment. This is done for all segments in the data set.

To allow for better synthesis later on, we do not only collect
the empirical PDFs of the mean powers for each state, but
we also determine the correlation coefficients between the
mean powers of all delay indices per state. This gives us one
correlation matrix Ks per state.

Now, in order to synthesize CIRs for a certain state, one
needs to draw random mean amplitudes and a random fading
amplitudes per delay index. Thinking of the proposed large-
scale segmentation, we propose to keep the mean amplitude at
a given delay constant for one segment, i.e., we first draw the
mean amplitudes for all delay indices. We again use ITS and
consider the correlations between the mean amplitudes by gen-
erating random realizations un (comp. Sec. III-B) for all delay
indices such that they have the correlations from Ks between
each other. After having the mean amplitudes, one has to draw
the fading amplitudes per delay index. By drawing consecutive
fading amplitudes for the same delay independently from each
other, the channel taps are uncorrelated in time and hence do
not yet reflect a correlated temporal variation of the channel
with finite Doppler frequency.

To incorporate temporal correlation in the drawing of fading
amplitudes, we adapt the fading simulation approach proposed
in [15] to the distributions fC̃s,n

(c̃s,n). Fig. 4 illustrates this
process. Simulated Rayleigh fading with a certain Doppler
spectrum and a maximum Doppler frequency fm serves as
starting point. In contrast to [15], we consider the inverse of
the measured CDF F−1

C̃s,n
(c̃s,n) depending on the state and

delay index in this process. The synthesized fading amplitudes

c̃s,n(t) = F−1

C̃s,n
(FR(r(t))) (8)

have amplitude distributions corresponding to the measure-
ment data and the temporal correlation of simulated Rayleigh
fading. FR corresponds thereby to the CDF of the Rayleigh
distribution and r(t) is the simulated Rayleigh fading ampli-
tude. An exemplary time series of the temporally correlated
fading amplitude c̃s,n(t) is shown in Fig. 5. The correlation
becomes apparent in a finitely fast changing amplitude.

The phase of the synthesized fading ϕ(t) is taken from
the simulated Rayleigh fading process, as proposed in [15].
Finally, the complex fading amplitude is multiplied with
the segment-wise constant mean amplitude c̄s,n drawn from
fC̄s,n

(c̄s,n). The resulting synthesized amplitudes at tap index
n within a segment of state s lasting from t = 0 ... TSeg − 1
can be described as follows:

cs,n(t) = F−1

C̃s,n
(FR(r(t))) c̄s,n e

jϕ(t) . (9)

For each segment, this procedure has to be performed for
all delay indices to be considered. For state transitions, the
mean amplitude per delay changes and also the fading process
is interrupted, resulting in sudden changes of the channel
between segments. In Sec. IV, we investigate whether this is
a limitation of the model.
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Fig. 5: Exemplary time series of synthesized fading amplitudes

IV. VALIDATION

The primary objective of this model is to mimic the outage
behavior that measurement data causes in link-level simula-
tions. Therefore, a playback simulation with the data from
Sec. II serves as an evaluation basis for the model. The results
of the Physical Layer (PHY) simulations with synthesized
channels from our model should then resemble those of the
measured data. Before the results are compared, we briefly
introduce the simulation framework.

A. Simulation Framework

Since IEEE Wireless Local Area Network (WLAN) is
handled as a candidate for industrial communications [2], we
use the MathWorks WLAN Toolbox to perform simulations
with IEEE 802.11ac as PHY. Note that the particular choice
of the PHY for validation is of subordinate importance as
we are not interested in absolute performance results but
in differences between measured and synthesized channels.
The chosen PHY is based on Orthogonal Frequency Division
Multiplexing (OFDM) and thus inherently reflects effects like
the frequency selectivity of the channel. We assume that the
validation of the model applies as well to other OFDM-based
wideband PHYs such as 5G NR.

Table I gives an overview of the simulation parameters. The
standard system bandwidth closest to the measured bandwidth
is BSys = 80MHz. The antenna configuration is Single-
Input Single-Output (SISO) to match the measurement setup.
We consider closed-loop remote control as a typical URLLC
application, e.g. the control of an AGV. Therefore, we set
the Modulation Coding Scheme (MCS) to 1, which equals a
robust Quadrature Phase Shift Keying (QPSK) mapping with a
code rate of 1/2. We assume small control data packets of 300
Bytes to be sent periodically with a transmission interval of
1ms. The considered measurement scenario was repeated 10
times (200,000 measured CIRs). A playback simulation with
200,000 packets thus serves as a comparison for the synthesis.

B. Validation Results

The proposed channel model includes mechanisms on dif-
ferent time scales, i.e., the DTMC on the large scale and

TABLE I: Simulation Parameters

System Bandwidth 80MHz MCS 1

Antenna Config. SISO Payload Size 300Bytes

Transmission Interval 1ms Packets 200 k

synthetic fading on the small scale. To assess the suitability
of each of these mechanisms, we compare simulations using
the measured channels with three types of synthesis:

1) Uncorrelated Small-Scale Synthesis: The time series of
the large-scale states originates from the measurements and
synthetic fading is not temporally correlated, i.e., consecutive
CIRs have no correlation (corresponding to fm → ∞).

2) Correlated Small-Scale Synthesis: The series of states
originates from the measurements and synthetic fading is tem-
porally correlated. For all taps in the CIR, baseline Rayleigh
fading is produced with Jakes spectrum and fm = 12Hz.

3) Full Synthesis: The time series of the large-scale states
originates from the Markov process and synthetic fading is
temporally correlated (as for 2)).

As model-specific parameters, a segment length TSeg =
40ms, an energy fraction X = 0.99 and a memory length of
M = 1 proved to be suitable parameters for this environment.

As first, classical metric related to PHY investigations, the
PER is evaluated. This metric serves as a rough assessment
of whether measured and synthesized channels behave similar
over a complete measurement round. The resulting PERs
are shown in Fig. 6a. The good fit between synthesis and
measurement data indicates that the model is meaningful and
that parameters are well-chosen. For this metric, it is important
that the slopes of the curves coincide for higher SNR values.
However, the plot shows the limitations of this metric for as-
sessing the modeling quality since the mechanisms producing
temporal correlation seem to have no effect.

To assess the temporal outage behavior that the model
causes, we consider mean and maximum outage durations per
SNR. We expect a difference between the synthesis with and
without temporal correlation which can be seen in Fig. 6b.
The synthesis with uncorrelated fading causes outage durations
being too short. The reason is the transmission interval of
packets being lower than the expected coherence time TCoh.
By allowing the channel to change infinitely fast, bad chan-
nel conditions can simply disappear in the subsequent CIR.
Thereby, consecutive packet errors become more unlikely. At
the considered velocity and carrier frequency, a bad channel
condition would affect multiple consecutive packets.

This effect is well represented by both syntheses including
temporal correlation. The good match of the Correlated Small-
Scale Synthesis and the Full Synthesis with the measured
data indicates that the proposed mechanism is suitable. An
industrial URLLC application usually has a tolerable outage
duration that must not be exceeded to avoid a shutdown of the
application [6]. For this reason, we consider it reasonable to
take the maximum occurred outage duration into account, as
shown in Fig. 6c. By looking at this metric, the capability
of emulating small-scale fading can be equally confirmed.
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Fig. 6: The model is validated by comparing the PER as well as outage durations between measured and synthesized channels.

Obviously, outage durations of 104 ms are not relevant for
URLLC but presented for the sake of validation completeness.

While the synthetic fading is responsible for a realistic
outage duration within a segment, the concatenation of corre-
lated segments ensures realistic outages exceeding a segment
length. The DTMC is capable of achieving this as the similarity
between the Full Synthesis and the Measured curve indicates
in Fig. 6b. Taking a more detailed look, the Measured curve
shows two different slopes. The point of changing slopes falls
together with the coherence time of about 10ms to 20ms on
the y-axis. We conclude that the length of segments TSeg must
at least exceed the expected coherence time of the channel.
If we choose segments to be too small, the modeled fading
deviates from the measured data. Segments being too long
carry the risk of changing large-scale properties within a
segment. Thereby, the accuracy of the empirical distributions
would suffer. In the scope of the investigations, different
segment lengths were systematically tested and a segment
length corresponding to half a wavelength,i.e., (TSeg = 40ms),
proved to provide the best match with the measured data.

V. CONCLUSION

This work was initiated by the question of how a data-
driven channel model can be derived such that the temporal
outage behavior of measurement data can be reproduced for
URLLC-related PHY investigations. By using suitable metrics,
e.g., the mean and maximum occurring outage duration, we
show that the model works on both the large and the small
scale. Even though transitions between large-scale segments
are not modeled to happen smoothly, consecutive outages
are nevertheless represented accurately. This is thanks to
carefully choosing the segment length under consideration
of the channel’s coherence time. In the future, it will be
interesting to study whether the model works similarly on
data generated within other environments and with different
transmission parameters. By artificially reducing the amount
of data from which the distributions are derived, this model
can also help to understand how much data is to be recorded
in a new environment such that metrics like the reliability can
be assessed. From the proposed modeling approach for SISO

channels, we can extend our studies to model Multiple-Input
Multiple-Output (MIMO) channels.
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