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Abstract—Wireless communications systems of the future are
expected to operate at very high bandwidths of up to multiple
Gigahertz. For such systems the power consumption of analog-to-
digital converters at the receiver will impose a challenge. Employing
1-bit quantization and temporal oversampling is a promising
approach to increase energy efficiency. However, since 1-bit
quantization is a highly non-linear operation, channel estimation
and synchronization algorithms have to be revised.

In this regard, we derive iterative data-aided timing estimators
based on the expectation-maximization algorithm and the scoring
algorithm assuming white noise at the receiver. Comparing the
performance of the expectation-maximization algorithm based
estimator, the scoring algorithm, and an existing non-data-aided
least-squares estimator by numerical evaluation, we find that
the scoring algorithm significantly outperforms the least squares
estimator in terms of the mean square error and closely approaches
the Cramér-Rao lower bound, different to the expectation-
maximization based estimator whose performance stays behind
the scoring algorithm. Additionally, we consider colored noise at
the receiver and evaluate the influence of the timing estimation
error on the system performance in terms of the spectral efficiency
using zero-crossing modulation.

Index Terms—1-bit quantization, oversampling, timing estima-
tion.

I. INTRODUCTION

Demands test wireless communications systems of the future
are expected to require data rates of 100Gbit/s and beyond
[1]. It looks promising to achieve such data rates by utilizing
multi-GHz bandwidth channels in the millimeter-wave and
sub-terahertz frequency bands above 100GHz [2]. Due to the
large signal bandwidth, the design of energy-efficient analog-to-
digital converters (ADCs) is becoming a challenge. A survey
by Murmann [3] compares recent ADC designs and finds that
the ADC power consumption increases quadratically with the
sampling rate for sampling frequencies above 300MHz. To
compensate this, a possible solution is to reduce amplitude res-
olution down to a minimum, i.e., employing 1-bit quantization,
as the ADC power consumption also grows exponentially with
amplitude resolution. Further, 1-bit quantization comes with the
advantage of reduced complexity of the analog design of the
receiver, e.g., due to not requiring an automatic gain control.

With only 1-bit ADC resolution, all information needs to be
conveyed in the zero-crossings of the signal. Thus, for such
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a system zero-crossing modulation (ZXM) [4] is a suitable
modulation scheme, which can be realized employing runlength
limited (RLL) sequences [5], to encode information in the
temporal distances between the zero-crossings, combined with
faster-than-Nyquist (FTN) signaling [6], to achieve rates beyond
1 bit/s/Hz per real signal dimension as proposed in [7]. A
practical transceiver design with 1-bit quantization and ZXM
has been presented in [8], achieving spectral efficiencies (SEs)
of up to 4 bit/s/Hz under the assumption of perfect phase
and timing synchronization. Precise timing synchronization is
crucial, as with FTN signaling symbols are placed on a finer
time grid. However, it is a challenging task to synchronize
the transmitter and receiver, as for timing estimation only
1-bit quantized samples are available and, therefore, existing
estimation approaches cannot be applied. Thus, it is necessary
to revise the timing estimation and synchronization algorithms.
In this regard, assuming a known timing offset, in [9] timing
synchronization in a 1-bit quantized system has been studied,
while in the present work we focus on timing offset estimation.

Bounds on the achievable performance of timing, phase, and
frequency estimation, i.e., the Cramér-Rao lower bound (CRLB),
for systems employing 1-bit quantization and oversampling at
the receiver have been studied in [10]. Moreover, in [11], both
a phase estimator and timing estimator have been derived, each
from the least squares (LS) objective function. However, they
do not achieve the theoretical possible estimation performance
stated by the CRLB. For the case of phase estimation in receivers
with temporally oversampled 1-bit quantization, in [12] iterative
methods for maximum likelihood (ML) estimation, namely
the expectation-maximization (EM) algorithm and the scoring
algorithm, have been studied, which have been extended to
phase noise tracking in [13]. These algorithms improve the
initial LS phase estimate, which only achieves the CRLB in
the low SNR regime, and close the gap to the CRLB also
for mid-to-high SNRs [12]. The application and evaluation of
these iterative estimation approaches for timing estimation is
the main contribution of this work.

In the following, we give a short outline of this paper.
In Section II, we introduce the system model. Next, we
derive an EM-based estimator and the scoring algorithm for
timing estimation in Section III. Moreover, in Section IV we
numerically evaluate the estimation performance in terms of
the mean square error (MSE) for the derived timing estimators
and evaluate its effect on the SE of a system using ZXM.



Finally, in Section V we summarize the results of this work.
Notation: In this work, vectors, matrices, random variables,

and random vectors are denoted by lower case bold letters,
e.g., x, by upper case bold letters X, by sans serif letters x,
and by bold sans serif letters x, respectively. Re (z), Im (z),
z∗, and arg(z) describe the real part, the imaginary part, the
complex conjugate, and the argument of z, respectively. Also
we define j =

√
−1. The expression XT denotes the transpose

of X and
p−→ denotes convergence in probability. For x ∈ R,

⌈x⌉ = min{n ∈ Z | n ≥ x}. Moreover, CN , E [·], Z, and C
are the complex normal distribution, the expectation operator,
the set of integers, and the set of complex numbers. When
sampling a time-continuous function x(t) with rate 1/Ts, the
symbol xk = x(kTs) denotes the k-th sample.

II. SYSTEM MODEL

We consider a system with a transmitter and a receiver
which are not synchronized in time, i.e., they have an unknown
deterministic timing offset. Let

u(t) =
N∑

n=1

angTx(t− nT − ϵT ) (1)

be the transmit signal constructed from a sequence of complex
symbols, represented by the random vector a = [a1, . . . , aN ]T,
and the transmit filter gTx(t) with a single-sided bandwidth
W < 1

T and symbol duration T . We model the timing offset,
by shifting the transmitter time axis by ϵT with ϵ ∈ [−0.5, 0.5].
In addition, the channel introduces a deterministic phase offset
ϕ. The receiver dithers the receive signal by a known phase
rotation φ(t) = ΩIFt with ΩIF << 1

T before receive filtering
and sampling at the time instants t = k T

M = kTs with the
oversampling factor M > 2, resulting in the received signal

rk =

N∑
n=1

ang(kTs − nT − ϵT )ej(ϕ+kΩIFTs)

︸ ︷︷ ︸
=sk(ϵ)

+nk. (2)

Here, g(t) = (gTx ∗ gRx)(t) where the receive filter gRx(t) has
a single-sided bandwidth Wr. The channel introduces additive
white Gaussian noise (AWGN) with power spectral density N0.
We express the sampled and filtered noise by the Gaussian
process {nk}k∈Z. From the assumption gRx(t) being a real func-
tion, it follows that {nk}k∈Z is circularly symmetric, such that
the distribution of the sampled noise at the receiver is given by

nk ∼ CN (0, N0). (3)

In case of employing a rectangular receive filter with its
bandwidth matched to the sampling rate, i.e., Wr = 1

2Ts
,

the sampled noise at the receiver is white. Furthermore,
we define the SNR = Es

N0M
with the symbol energy

Es = E[a∗nan]
∫∞
−∞ |g(t)|2 dt. Finally, the samples rk are 1-bit

quantized, yielding

yk = sign(Re (rk)) + j sign(Im (rk)). (4)

When employing 1-bit quantization the performance of the
timing and phase estimation depends on the timing and phase

offset of the receive signal [10]. In [10] it has been proposed
to apply uniform phase and sample dithering to remove these
dependencies. The same effect can be achieved by oversampling
the receive signal with an irrational M at the intermediate
frequency ΩIF which is chosen such that TsΩIF

π is irrational.
Note, that this phase dithering does not change the distribution
of the circularly symmetric complex Gaussian noise.

III. TIMING ESTIMATION

In this section, we study ML timing estimation, i.e., derive
estimators for the ML timing offset estimation problem

ϵ̂ = argmax
ϵ

p(y|a; ϵ) (5)

where p(y|a; ϵ) is the probability of observing the 1-bit
quantized symbol vector y = [y1, . . . , yK ]T with K = ⌈MN⌉,
given the transmit symbol sequence a and the timing offset
ϵ. As an analytical solution of (5) is not available, we consider
iterative estimation approaches. To this end, we assume the
symbols in a to be independent and identically distributed (i.i.d.)
and zero-mean. Moreover, we employ a rectangular receive
filter with bandwidth Wr = 1

2Ts
, i.e., we match the receive

filter bandwidth to the sampling rate such that noise process
{nk}k∈Z at the receiver is white with variance σ2 = N0.

A. Expectation-Maximization Algorithm
The EM algorithm aims to find an estimate for the timing

offset ϵ by maximizing p(r|a; ϵ) instead of p(y|a; ϵ). However,
with r = [r1, . . . , rK ]T being a hidden variable the EM
algorithm iteratively maximizes the conditional expectation of
p(r|a; ϵ) given the observation y. As in our case y is a function
of r with the elements rk being i.i.d. when conditioning on a and
ϵ, we simplify the EM algorithm as stated in [14, Chapter 7.8] to

ϵ̂l+1 = argmax
ϵ

∑
k

Erk

[
ln p(rk|a; ϵ)

∣∣∣yk = yk, a = a; ϵ̂l

]
(6)

where ϵ̂l denotes the estimate of ϵ in the l-th iteration. Using
that rk ∼ CN (sk(ϵ), σ

2) while conditioning on a, it follows

ϵ̂l+1= argmin
ϵ

∑
k

Erk

[
|rk − sk(ϵ)|2

∣∣∣yk = yk, a = a; ϵ̂l

]
(7)

= argmax
ϵ

∑
k

Erk

[
Re (rks

∗
k(ϵ))

∣∣∣yk = yk, a = a; ϵ̂l

]
(8)

= argmax
ϵ

∑
k

Re
(
s∗k(ϵ) Erk

[
rk

∣∣∣yk = yk, a = a; ϵ̂l

])
(9)

where we obtain (8) using that
∑

k |sk(ϵ)|2 is independent of
ϵ for large N [15, p. 391]. The conditional expectation in (9)
can be expressed as

Erk

[
rk|yk=yk, a=a; ϵ̂l

]
=

∫
C

p(rk|yk,a; ϵ̂l)rk drk (10)

=sk(ϵ̂l) +
σ√
π

(
Re
(
yk
)

erfcx
(
− 1

σRe
(
yk
)
Re
(
sk(ϵ̂l)

))
+ j

Im
(
yk
)

erfcx
(
− 1

σ Im
(
yk
)
Im
(
sk(ϵ̂l)

))) (11)

=f1(yk, ϵ̂l) (12)



where we introduce the function f1(yk, ϵ) as a shorthand no-
tation and use the scaled complementary error function defined
as erfcx(x) = exp(x2) erfc(x) = exp(x2) 2√

π

∫∞
x

e−t2 dt.
We solve the optimization problem in (9) by utilizing the

EM phase estimate [12]

ϕ̂l+1 = arg

(∑
m

u∗
m(ϵ)e−jφmf1(ym, ϵ̂l)

)
(13)

where uk(ϵ) = u(kTs) with u(t) given in (1) and φk = kTsΩIF

is due to phase dithering, such that

ϵ̂l+1 = argmax
ϵ

Re

(∑
k

u∗
k(ϵ)e

−jφkf1(yk, ϵ̂l)

× exp

(
−jarg

(∑
m

u∗
m(ϵ)e−jφmf1(ym, ϵ̂l)

)))
(14)

= argmax
ϵ

∣∣∣∣∣∑
k

u∗
k(ϵ)e

−jφkf1(yk, ϵ̂l)

∣∣∣∣∣ (15)

= argmax
ϵ

∣∣∣∣∣∑
k

u∗
k(ϵ)e

−jφkf1(yk, ϵ̂l)

∣∣∣∣∣
2

(16)

p−→ argmax
ϵ

∑
k

∑
m

(
f1(yk, ϵ̂l)e

−jφk
)∗(
f1(ym, ϵ̂l)e

−jφm
)

×
N∑

n=1

g(kTs − nT − ϵT )g(mTs − nT − ϵT ). (17)

We obtain (15) with |z| = z e−jarg(z) and (17) is due to the
law of large numbers and the fact that the symbols an are zero-
mean i.i.d., where we also drop the constant E

[
|an|2

]
. Also,

gTx(t) = g(t), assuming the receive filter being a rectangular
filter with Wr = 1

Ts
. As described in [15, Chapter 7.6.1], the

inner sum in (17) is periodic in ϵT and as g(t) is bandlimited
to 1

T and real valued it can be represented by the first two terms
of its Fourier series. Using this, we solve for ϵ̂l+1 yielding

ϵ̂l+1 =− 1

2π
arg

(∑
k

∑
m

(
f1(yk, ϵ̂l)e

−jφk
)∗

×
(
f1(ym, ϵ̂l)e

−jφm
)
q((k −m)Ts)e

−jπ k+m
M

)
(18)

with q(t) being the inverse Fourier transform of

Q(f) = G

(
f − 1

2T

)
G∗
(
f +

1

2T

)
(19)

and G(f) being the Fourier transform of the combined transmit
and receive filter g(t).

B. Scoring Algorithm
The Fisher scoring algorithm is an iterative estimation

approach, which finds the maximum of the log-likelihood
function, similar to the Newton-Raphson method, based on first
and second order derivatives of the objective function. Provided
with an initial estimate ϵ̂0, the estimate of the Fisher scoring
algorithm can be iteratively calculated using [14, Section 7.7]

ϵ̂l+1 = ϵ̂l + I−1(ϵ̂l)V (ϵ̂l) (20)

where ϵ̂l is the estimate of the l-th iteration. Further, V (ϵ) is
the score function, i.e., first derivative of the log-likelihood
function, and I(ϵ) the Fisher information (FI), i.e., the negative
expectation of the second derivative of the log-likelihood
function. Under certain regularity conditions [16] the estimate
ϵ̂l approaches the ML estimate as l −→ ∞.

While an analytical expression for the FI I(ϵ) is not known,
for {nk}k∈Z being white noise and the symbols an being i.i.d.,
it has been shown in [10] that a lower bound on I−1(ϵ) is
given by

I−1(ϵ) ≥ (IUB)
−1 (21)

=

(
4πNT 2 Es

N0

∫∞
−∞ f2|G(f)|2 df∫∞
−∞ |G(f)|2 df

κ1

(
Es

N0M

))−1

(22)

κ1(x) = c1e
−c2x(I0(c2x) + I1(c2x)) (23)

where the constants are given by c1 = 4.0360, c2 = 0.3930,
and Iν(·) is the modified Bessel function of the first kind of
order ν. The application of this lower bound instead of the
exact expression for the inverse of the FI in (20) is possible,
as the lower-bounding only has an impact on the convergence
speed but does not change the limit, i.e., the value of liml→∞ ϵ̂l
of the scoring algorithm.

Under the assumption of white noise samples, the score
function is obtained by taking the derivative of the log-likelihood
function yielding

V (ϵ) =
∂

∂ϵ

K∑
k=1

ln p(yk|a; ϵ) (24)

=
∂

∂ϵ

K∑
k=1

(
ln

(
1

2
erfc

(
− 1

σ
Re (yk)Re (sk(ϵ))

))

+ ln

(
1

2
erfc

(
− 1

σ
Im (yk) Im (sk(ϵ))

)))
(25)

=

K∑
k=1

Re
(∂s∗k(ϵ)

∂ϵ
f2(yk, ϵ)

)
(26)

where the function f2 is given by

f2(yk, ϵ) =
2

σ
√
π

(
Re (yk)

erfcx(− 1
σRe (yk)Re (sk(ϵ)))

+j
Im (yk)

erfcx(− 1
σ Im (yk) Im (sk(ϵ)))

)
. (27)

Finally, for practical reasons, we state the solution as a matched
filter operation

V (ϵ) = Re

(
e−jϕ

N∑
n=1

a∗nż2(nT + ϵT, ϵ)

)
(28)

with

ż2(t, ϵ) = (hd ∗ z2)(t, ϵ) (29)

=

∞∑
k=−∞

(hd ∗ gMF)(t− kTs)f2(yk, ϵ) e
−jφk (30)



where gMF(t) = g(−t) is the matched filter, z2(t, ϵ) the
matched filter output, and hd the digital differentiator [17,
Chapter 5.6.1] defined by hd(kTs) = 0 for k = 0 and
hd(kTs) =

1
kTs

(−1)k for k ̸= 0.

C. Discussion

Both the EM-based approach and the scoring algorithm
require an initial value ϵ̂0 for the recursion in (18) and (20).
For initialization, we utilize the LS-based estimator [11], i.e.,

ϵ̂0 = ϵ̂LS = − 1

2π
arg

(∑
k

∑
m

(
yke

−jφk
)∗ (

yme−jφm
)

×q((k −m)Ts)e
−jπ k+m

M

)
(31)

where q(t) is the inverse Fourier transform of (19), and which
is similar to the timing estimator for the unquantized case given
in [15, Section 8.4].

Note that both, the EM-based algorithm and the scoring algo-
rithm, require knowledge of the transmit symbols a and of the
phase offset ϕ, i.e., they are data-aided estimators, whereas the
LS estimator in (31) is a non-data-aided estimator. This means
that different to the LS estimator the iterative estimators require
pilot symbols and in addition a prior phase estimate, which
can be obtained after an initial LS-based timing estimate [11].

We derived the estimators under the assumption of white
noise at the receiver. However, the power of the noise samples
can be reduced by matching the bandwidth of the receive filter
to the transmit signal bandwidth with Wr = W + ΩIF

2π . In this
case the noise samples are correlated, i.e., we have colored noise
at the receiver. Deriving an estimator for the case of colored
noise has not been possible, as there is no general expression for
orthant probabilities [18]. However, in the following we evaluate
the estimation performance of the derived estimators also with
colored noise, corresponding to mismatched estimators, as
performance gains have been observed in the similar case of
phase estimation in [12].

D. Consistency

In the following, we analyze if the iterative estimators derived
in this work are consistent estimators if they are initialized by
ϵ̂0 = ϵ̂LS, which is a consistent estimate [11].

For the scoring algorithm it can be shown that the estimates
ϵ̂l are consistent if the scoring algorithm is initialized by a
consistent estimate, i.e., it holds that

ϵ̂l
p−→ ϵ as N −→ ∞. (32)

In the following, we provide a sketch of the proof. For the
update step ∆l = I−1

UB V (ϵ̂l) we can show that

∆l
p−→ I−1

UB V (ϵ) = 0 (33)

with the help of the continuous mapping theorem [19]. Moreover,
in (33) we utilize the fact that the lower bound on the inverse
of the FI I−1

UB is a positive constant w.r.t. the parameter ϵ and
that the score function V (ϵ) is zero at true timing offset ϵ, as
the log-likelihood function is maximized for the true timing

offset ϵ. Applying (33) to the RHS of (20) yields the induction
step

ϵ̂l
p−→ ϵ⇒ ϵ̂l+1

p−→ ϵ. (34)

By induction, it follows that if ϵ̂0 is consistent, all estimates
ϵ̂l are consistent as stated in (32). With the scoring algorithm
being a consistent estimator, it is also asymptotically unbiased,
i.e., E [ϵ̂l]

p−→ ϵ.
In general, the EM algorithm converges under mild assump-

tions to the ML estimate [20] and, therefore, provides consistent
estimates. However, in contrast to the scoring algorithm, our
numerical evaluations show that the EM-based estimator in
(18) does not converge towards the ML estimate. The reason is
that in (8) and (17) we consider N → ∞, i.e., infinitely many
observations. However, the numerical evaluation in the following
section shows that for the considered case of N = 100 the
estimator given by (18) does not converge to the ML estimate,
such that for finite N the given EM-based estimator is not
consistent.

IV. PERFORMANCE EVALUATION

We evaluate the performance of the presented timing
estimators in terms of their MSE. Moreover, to evaluate if
the achieved timing estimation performance is sufficient, we
study the influence of timing estimation error on the system
performance in terms of the SE for a system using ZXM.

A. Performance of Timing Estimation

We compare the performance of the timing estimators in
terms of the MSE(ϵ̂) = E

[
(ϵ̂− ϵ)2

]
. For this purpose, we

consider a pilot sequence consisting of N = 100 i.i.d. QPSK
symbols. For the transmit filter we consider a root-raised-cosine
(RRC) transmit filter with a roll-off factor α = 0.6, cf. [8].
At the receiver, we apply a frequency offset ΩIF = 0.12π and
sample with different oversampling factors M . For initialization
of the iterative estimators we utilize the LS estimator (31) and
we stop after a fixed number of 50 iterations for the EM-based
as well as the scoring algorithm, where both iterative algorithms
have converged, which is not displayed here. Comparing the
EM-based estimator and the scoring algorithm in terms of
convergence speed, numerical evaluations show that the scoring
algorithm converges substantially faster that the EM-based
algorithm and shows no significant changes after 4 iterations.

First, we evaluate the performance of the estimators for
the white noise setting as considered for their derivation, i.e.,
Wr = 1

2Ts
. The results for the estimation performance over

Es/N0 are displayed in Fig. 1. We observe that the scoring
algorithm is able to greatly improve the initial LS-estimate and
achieves the lowest MSE of all estimators, while also being
very close to the lower bound on the CRLB (CRLB-LB) given
by (22). At mid-to-high SNR, oversampling has a positive effect
on the performance, which diminishes for lower SNR. The
EM-based estimator however has a higher MSE than expected.
It does not converge toward the ML estimate in general and
performs even worse than the LS estimator at high SNR. This
is likely due to the fact that for numerical evaluation we
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Fig. 1. MSE over Es/N0 of timing estimators when employing a rectangular
receive filter with Wr = 1/(2Ts)

consider a finite number of N = 100 pilot symbols, while for
the derivation of the EM-based estimator we assume N → ∞
in (8) and (17).

In case of adapting the receive filter bandwidth to the
transmit signal bandwidth, i.e., Wr = W + ΩIF

2π , we evaluate
the estimators introduced in this work in a mismatched setting.
The estimation performance for this case is displayed in Fig. 2.
As no closed-form CRLB for timing estimation with colored
noise is known, we compare the MSE to an upper bound on
the CRLB (CRLB-UB) [21] [10] computed by Monte Carlo
simulation. We observe a similar behavior as for white noise,
the scoring algorithm outperforms the EM- and LS-based
estimation approaches and also is very close the CRLB-UB
except for high SNR and for M = 6.12 in the low SNR regime.
In case of a low SNR and M = 6.12 the effect of the noise
correlation not considered in the derivation of the estimators
increases and leads to a decreased estimation performance.
Moreover, also in the high SNR regime the scoring algorithm
deviates from the CRLB-UB due to the mismatched estimation
approach. Furthermore, for M = 6.12 for a wide SNR range
the MSE of the scoring algorithm is lower than the CRLB for
the white noise case. In this range the advantage of a smaller
noise power due to a reduced receive filter bandwidth is larger
than the effect of the mismatched estimation. I.e., for higher
oversampling factors the estimation performance benefits from
lowering the bandwidth of the receive filter. This also coincides
with the fact that for M = 6.12 the CRLB-UB for colored
noise is lower than the CRLB-LB for the white noise case.
We conclude that it is beneficial to match the bandwidth of the
receive filter to the signal bandwidth for a large range of SNRs.

B. Communication Performance

To assess if the achieved timing estimation performance
is sufficient, we evaluate the communication performance in
terms of spectral efficiency when using ZXM in the presence
of the remaining timing estimation error. For this purpose, we
consider the transceiver design including RLL encoding and
corresponding receiver side demapping presented in [8]. The
system employs ZXM using RLL sequences in combination
with FTN signaling, where the number of transmit symbols
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Fig. 2. MSE over Es/N0 of timing estimators when employing an RRC
receive filter with Wr = W + ΩIF/(2π); both CRLBs for a rectangular
receive filter, CRLB-LB for white noise (WN) with Wr = 1/(2Ts)

per Nyquist interval T is denoted by MTx. At the receiver, the
signal is sampled with rate 1

Ts
= MMTx

T and 1-bit quantized.
In the present work, additionally to [8] we consider a timing
offset of the receiver and its impact on the system performance.
To this aim, we shift the sample time instants of the received
signal by ϵ∆ = ϵ − ϵ̂, which is the remaining timing offset
after a timing synchronization by adapting the sampling time
instants based on the estimate provided by the considered timing
estimation algorithm, i.e., an analog timing synchronization.

To obtain an estimate for the SE, we follow the same
approach as described in [8] based on lower-bounding the
mutual information (MI) between a block of p input bits ci of
the RLL encoder and the corresponding log-likelihood ratios
(LLRs) λi at the output of the RLL decoder by

I(c;λ) ≥
p∑

i=1

I(ci;λi). (35)

Using (35), the SE is lower-bounded as

SELB =
MTxRRLL

W95%T

1

p

p∑
i=1

I(ci;λi) (36)

where RRLL is the code rate of the RLL code. Moreover, we
consider the fractional power containment bandwidth W95%,
allowing 5% out-of-band (OOB) emission. Note that, when
calculating the SNR, we use [8, Eq. (61)] to obtain the symbol
energy Es of the RLL sequences. We refer the reader to [8] and
[22] for a more detailed description of the evaluation method.

In Fig. 3 we compare the SE of a system with perfect timing
synchronization (ϵ∆ = 0) and a system with a timing offset after
employing LS and scoring algorithm based timing estimators.
Moreover, the AWGN capacity SEAWGN = 1

95% log2(1+SNR)
is displayed. The EM-based approach is omitted here, due to
its subpar estimation performance.

In general, we find that the superior estimation performance
of the scoring algorithm compared to the LS estimator translates
to a performance increase w.r.t. SE. Without FTN signaling,
i.e., MTx = 1, we observe only marginal increases in SE at
low SNR when utilizing an estimate obtained by the scoring
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Fig. 3. Lower bound on SE over SNR depending on timing estimation approach
for different FTN signaling factors MTx, oversampling factor M = 2, and
Wr = W +ΩIF/(2π)

algorithm compared to the LS-based estimator. In this domain
it is sufficient to rely on estimates of the LS method, which has
a lower computational complexity. With increasing MTx the
performance gains by using the scoring algorithm instead of the
LS timing estimator increase, where for MTx = 5 the SE of
a system using the scoring algorithm based timing estimator is
substantially higher than in the case of using the LS timing esti-
mator, greatly reducing the performance gap to the case of per-
fect timing synchronization. The reason is that with higher FTN
signaling factors, the zero-crossings are placed on a finer timing
grid, such that the system is more sensitive to timing errors.

V. CONCLUSION

In this work, we studied iterative data-aided timing estimation
algorithms for systems employing 1-bit quantization and
temporal oversampling at the receiver. We derive such estimators
based on the expectation-maximization algorithm and the
scoring algorithm, both under the assumption of white noise at
the receiver. Considering white noise, our numerical evaluations
show that the scoring algorithm closely approaches the CRLB
and achieves the lowest MSE compared to the EM-based ap-
proach and the existing LS timing estimator, where however the
LS estimator is non-data-aided and has a lower computational
complexity. Also, we observe that the estimation performance
of the scoring algorithm for high oversampling factors in a
wide SNR range benefits from matching the bandwidth of the
receive filter to the signal bandwidth, which results in colored
noise and, thus, mismatched estimation. However, at low and
high SNR this mismatch leads to a performance degradation.

Furthermore, we evaluate the communication performance for
a system using ZXM and an analog synchronization based on
the different timing estimation algorithms, showing that a system
utilizing LS timing estimation does not achieve the theoretically
possible system performance at high FTN signaling factors,
while the scoring algorithm is able to almost close this gap.

Overall, the presented scoring algorithm enables a sufficiently
precise timing estimation and, thus, is a further major step

towards the realization of energy-efficient wideband millimeter-
wave and sub-terahertz communications systems using ZXM
with high FTN signaling factors and receivers with 1-bit
quantization.
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