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Magnetic Ground State of a Thin-Film Element
Wolfgang Rave, Member, IEEE,and Alex Hubert, Senior Member, IEEE

Abstract—By means of three-dimensional numerical calcula-
tions we studied possible micromagnetic configurations in a rect-
angular Permalloy-like thin-film element. The parameters were
chosen to be compatible with the so-called micromagnetic standard
problem 1. We demonstrate that for these parameters a diamond
domain pattern is the lowest energy state that replaces cross-tie
patterns favorable in larger elements. Only at smaller sizes does the
originally envisaged Landau pattern form the ground state. The
transition to high-remanence structures (or what would be com-
parable to a “single-domain” state) is found for lateral sizes that
are an order of magnitude smaller than the benchmark parame-
ters. The transitions among the different domain patterns become
plausible in view of the energy of symmetric Néel walls in extended
thin films. The features of the high-remanence structures can be
derived from the principle of uniform charge distribution.

Index Terms—Benchmark, numerical micromagnetics, standard
problems, thin-film elements.

I. INTRODUCTION

WHILE in the days of W. F. Brownmicromagnetics[1]
was an art for mathematically inclined physicists, it has

nowadays turned to a relatively widespread “engineering” ac-
tivity. This development was caused by the availability of inex-
pensive, powerful computers and led to a considerable increase
in the number of publications in numerical micromagnetism.
Nevertheless, the micromagnetic equations (at least until today)
have not become a problem of pure number crunching, which
might be attributed to their main difficulty, which lies in solving
the nonlocal magnetostatic equations in every step of the energy
minimization.

This situation led to a number of doubtful results and to the
need for reliable reference solutions of typical micromagnetic
problems. To satisfy this demand, a few years ago, a micromag-
netics modeling activity group at the National Institute of Stan-
dards and Technology (NIST) was founded and the so-called
standard problem 1 (SP1) was established [2]. This problem
asked for the hysteresis loop of a 2-m 1- m 0.02- m
thin-film element with material parameters that were not too dif-
ferent from what could be called Permalloy (the exact reduced
anisotropy constant in SP1 is 0.0024, markedly
larger than that of true Permalloy, which is usually described by

0.00025). As abbreviations for the material constants, we
use uniaxial anisotropy constant, stray
field energy constant, and exchange constant. The values
of the benchmark problem that are used throughout this paper
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are 500 J/m, A/m, and
J/m).

The anonymously submitted results to this benchmark
problem were rather disappointing [2], however, because
calculated coercivity values or switching fields differed by as
much as a factor of 100, provoking comments on the general
unreliability of numerical micromagnetic computations [3], [4].

Beside the trivial explanation with programming errors1 or
serious underdiscretization (which seems undeniable for at least
some of the submitted solutions when we look at the presented
vector and grayscale plots; see [2]), a less trivial reason for the
large discrepancies observed could have been that the magnetic
starting patterns were different for these simulations. We con-
sidered the knowledge about the magnetic ground state and the
most important metastable states already in itself useful for a
better understanding of a magnetic thin-film element [5].

Our answer to this question for the particular case of the pa-
rameters of SP1 will be described in Section II. To this end, the
total energy of eight configurations in zero field was calculated
with finite element methods extrapolated to infinitely fine dis-
cretization. In this way, the total micromagnetic energy of the
investigated metastable states could be reliably determined and
the lowest energy configuration could be identified.

Section III extends these calculations to elements of different
lateral size (keeping the film thickness constant). We demon-
strate that, depending on size, five different configurations rep-
resent the lowest energy state. A calculation of the energy of
symmetric Néel walls in extended films for different wall angles
serves to understand the reason why the Landau pattern gets re-
placed by other domain patterns in large elements. Finally, Sec-
tion IV is an attempt to achieve a better understanding of the
various configurations by constructing domain models in such
a way that their energy comes close to the equilibrium energies.
Such domain models could be extended to parameter combina-
tions that are still outside of the range of micromagnetic calcu-
lations.

II. GROUND STATE AND METASTABLE STATES FORSTANDARD

PROBLEM 1

Already in a thin-film element of moderate size, we find a
surprising variety of possible magnetic states that can exist as
metastable solutions and that were partially investigated in sev-
eral papers, e.g., [6]–[11]. Bearing these in mind, but also guided

1Of course, we also cannot exclude errors for the present calculations. How-
ever, we checked some results against independent calculations of other col-
leagues. The observation of a discrepancy between our results and those of [11]
led to the discovery of a problem of the vector potential method in dealing with
situations in which the demagnetizing field is very small. Calculations by R.
Hertel, using the scalar potential, yielded again agreement with our results. An-
other comparison for one specific set of parameters with an independent calcu-
lation by J. Miltat, Orsay, also gave satisfactory agreement with our results.
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Fig. 1. Investigated magnetization patterns for a rectangular thin-film element. Numerically calculated equilibrium structures for the parameters of SP1 are
presented by pairs of grayscale plots. For each configuration in the upper image contrast due to the magnetization, componentm can be compared with contrast
due tom in the corresponding image below. Such contrasts are obtained experimentally, e.g., with the Kerr effect or Lorentz microscopy with differential phase
contrast.

by experimental domain observations [12], [13] andvan den
Berg’s theory for such elements [14], [15], we tried eight pat-
terns for our study, six of which proved to be metastable at zero
field.

Equilibrium states were obtained after numerical minimiza-
tion of the total energy density consisting of anisotropy, ex-
change, and demagnetizing energy contributions

(1)

(Further details of the computational method are given in the
Appendix, to which the interested reader is referred.) For each
of the eight configurations, a pair of gray-shade images displays
in Fig. 1 the magnetization components and along the
in-plane directions for the parameters of SP1. Roughly, the con-
figurations can be divided into two principal classes, which have
either a low (Landau, diamond, tulip, and cross-tie states) or a
high average magnetization and remanence (flower andand
states). As we will demonstrate in Section IV, this classification
corresponds to configurations that can be described by conven-
tional, uniformly magnetized domain patterns, and more or less
uniformly charged domains.

A. Investigation of the Requirements on Numerical Calculation

To determine the state of lowest energy, we at first studied the
discretization requirements. According to our previous results
[16], [17], one to two cells on the smaller one of the character-
istic micromagnetic lengths (the stray field exchange
length) and (the wall width parameter) was necessary
to achieve mesh independence. For a soft magnetic material,
such as in the case of SP1, is the decisive length scale

that has to be described properly. Measured in these character-
istic units, SP1 corresponds to units of the
stray field exchange length. Expressed in discretization cells,
this means that on a regular grid about 218 000 cells are neces-
sary to have at least one cell per exchange length, and it takes
1.74 million cells to subdivide each characteristic length into
two cells in every dimension. We had recently demonstrated the
capability to calculate problems of this size using fast Fourier
transform (FFT) techniques in our study of magnetic states in
cube-shaped particles, [17] and could apply these methods in a
straightforward manner to the present problem (we only used
faster FFT routines that adapt to the specific architecture of the
used computer [18]). To achieve mesh independence, we gen-
erally calculated all patterns on several meshes with decreasing
cell size.

The convergence of the numerically calculated energies is
plotted in Fig. 2 as a function of the inverse square of the number
of discretization cells along the long edge of the element. In
Fig. 2(a), results for the lowest energy state (or “ground” state)
of SP1 are shown. The variation between the grids
and , which is already below 1% is clearly in-
significant for the decision that is the ground state when the four
metastable domain states are compared in (b). To complete this
example, the high-remanence states are included in (c) on a still
larger energy scale. They are all energetically well above the do-
main states for this element size and geometry. In (b) and (c), the
discretization (only one cell for every forth exchange
length laterally) is included which, appears clearly insufficient.

We note that for one to two cells per exchange length, the re-
sults become more or less independent of the mesh, confirming
our expectations. Similarly we observed that the-component
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Fig. 2. Convergence of the total reduced energy of the investigated structures
with the number of discretization cellsN along the long edge of the element.
(a) Only the diamond domain pattern is considered for several discretization
levels. (b) Comparison of four domain patterns. (c) High-remanence states are
included. Note the different energy scales.

in the vortex centers of the domain configurations needed dis-
cretization levels of one to two cells per stray field exchange
length to approach unity, whereas for coarser grids, it was much
reduced.

Due to the fact that the vortices were scarcely visible on the
scale of Fig. 1 as tiny black and white dots in the-compo-
nent, we did not include these plots there. A comparison of the
vortex evolution of the Landau structure at different sizes is in-
tended to illustrate the relative importance of the central vortex
(see Fig. 3; as throughout the rest of the paper, the element thick-
ness is kept constant at 20 nm). The more or less continuously
rotating structure at small sizes (a horizontal wall segment be-
comes only visible for 0.5 m), in that the vortex is still

Fig. 3. Change of the Landau pattern with element size. Central vortex loses
more and more importance with increasing element size. To resolve it correctly
for L = 2 �m posed a challenge for SP1. Element thickness for all structures
was kept at 20 nm.

a dominant part, transforms to a more or less regular domain
pattern with increasing element size. On the scale of the param-
eters of SP1, the vortex is a tiny feature that becomes difficult
to resolve properly.

From the energy variation between the grids in Fig. 2, we saw
that the vortices do not contribute significantly to the total en-
ergy. However, such weak energy gradients cause stiffness prob-
lems in the energy minimization, because the vortex (vortices)
can float around their optimum position(s). Therefore, we com-
pared unconstrained calculations with others, where we kept
the magnetization at the position of the vortex centers fixed,
pointing along the vertical-direction normal to the thin film.
This constraint usually led to an acceleration by a factor of 5–10
in our energy minimization. In addition, it allowed us to com-
pute the patterns at lower discretization without “losing” the

-component in the vortex centers.
Optimum vortex positions were obtained from several calcu-

lations with the vortices fixed at different positions along the
long edge of the element, but always in the middle with respect
to the short edge. The optimum for the Landau pattern was found
at , i.e, in the center of the element. The vortices of the di-
amond pattern have their optimum positions almost precisely
at and , which is expected due to flux closure. For
the cross-tie structures, values of and are a good ap-
proximation. Precise values can be found in Fig. 4, where the
energies of the different structures are plotted as a function of
vortex position for the element sizes 2m 1 m (the bench-
mark parameters; compare the variation in energy in relation to
Fig. 2) and 1 m 0.5 m. The thickness was kept at 20 nm in
both cases.

For sceptical readers, we mention that we compared, of
course, some results with unconstrained calculations, but did
not notice any significant difference to runs with the optimized
positions beside longer computation time.

B. Results for the Parameters of the Standard Problem

Detailed results concerning the magnetic ground state of SP1
are collected in Table I, where the total reduced energy densi-
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Fig. 4. Energy as function of fixed vortex position for (a)L = 1 �m and
(b) L = 2 �m. Landau, diamond, single, and double cross-tie patterns were
investigated (forL =1 �m, the double cross-tie is not yet stable and appears
therefore not for this size).

TABLE I
EXTRAPOLATED TOTAL AND PARTIAL REDUCED ENERGY DENSITIES�

(DEMAGNETIZING, EXHANGE, AND ANISOTROPY) FOR THE STUDIED

MAGNETIZATION PATTERNS WITH THE PARAMETERS OF THESTANDARD

PROBLEM. ALL ENERGY DENSITIES ARENORMALIZED WITH RESPECT TO THE

STRAY FIELD ENERGY CONSTANTK = � M =2 = 3:9810 J=m . FOR

COMPARISON WITHOTHER RESULTS IN THELITERATURE, THE TOTAL ENERGY

e IS GIVEN. IT IS RELATED TO � BY e = � �K � V AND IS

LISTED IN UNITS OF10 J (K �V AMOUNTS TO1:59� 10 JFORSP1)

ties with their different contributions (normalized to the stray
field energy density ) are compared for seven different mag-
netic configurations. In addition, the total energy of the platelet
in SI-units is specified. For this size, the high-remanence states
have about twice as much energy as the domain patterns. Among
the latter, the diamond structure represents the global energy
minimum and saves about 5% in energy compared with the
single cross-tie, and 6% in comparison with the Landau pattern,
the two next favorable configurations. Although the flower state
is probably not stable at this size (as will be explained in Sec-

tion III), we included its energies, which can be calculated using
constrained vectors, for comparison.

For the tulip state for which we tried different variants
(opening angle of the tulip, position of the tulip vortex), the
situation was worse, because we could not find a pattern that
did not decay finally into a diamond state for the sizes that
we could investigate with sufficient discretization. The image
displayed was obtained for a coarse grid of only one cell for
every second exchange length . For this reason, we
give no energies for the tulip pattern in Table I. Nevertheless,
we kept the pattern in this paper, because the observation
confirmed older assumptions [19], based on estimates of the
associated domain and wall energies, that the experimentally
well-known tulip configuration is stabilized only extrinsically,
i.e., by defects to which the additional vortex in the interior
might attach or edge roughness where the two edge singularities
(there are two points where the magnetization has to point out
of, or into, the element) can be pinned.

III. SIZE DEPENDENCE OF THEGROUNDSTATE CONFIGURATION

In order to find out what kind of domain patterns might
occur in even larger elements, and when quasi-single-domain
states with high remanence would become absolutely stable
at smaller sizes, we extended the previous calculations to
different element sizes. Keeping the thickness of 20 nm, the
other material parameters as well as the aspect ratio of 2 : 1
unchanged, we varied only the length of the element. The
calculated size dependence of the reduced total energies of
the different structures is displayed in Fig. 5. The reduced
total energy density normalized to the stray field energy den-
sity of the five configurations with lowest energy for element
sizes up to two microns is shown in (a). These curves, which
can be immediately correlated with an effective demagne-
tizing factor (demagnetizing factors for the circumscribed and
inscribed ellipsoids are 0.0044 and 0.0062, respectively) and
are difficult to tell apart, however. Therefore, we plot in (b)
and (c) the product of reduced energy density times reduced
length, as a function of the element length in micrometer. This
makes the transition points more distinguishable. Starting at
small sizes [Fig. 5(b)], a first transition from the flower to
the and states occurs slightly above 100 nm. The
transition is caused by a gain in stray field energy at larger
sizes, corresponding to a second-order phase transition that is
similar to a kind of “buckling” (the term should be used with
care and not be confused with the eigenmode of ellipsoids, of
course). The critical length can be determined by monitoring
the magnetization vectors at the center of the end faces of
the elements (the vectors are indicated in the inset in Fig. 6).
The -component of these vectors is plotted as a function
of element size for the and states in Fig. 6. It vanishes at
about 105 nm for the state and at about 110 nm for the
state. This means that the state remains stable for smaller
particles and is thus slightly favored relative to thestate.
(An oblique external field on the other hand, would select an

state that can provide a higher moment in field direction.)
Above the transition from the flower to theand states, the

flower state should obviously be instable and decay into either

This document is a preprint of: W. Rave and A. Hubert, “The Magnetic Ground State of a Thin-Film Element,” in IEEE
Transactions on Magnetics (TRC), vol. 36, no. 6, Nov 2000. DOI:10.1109/20.914337

© 2000 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



3890 IEEE TRANSACTIONS ON MAGNETICS, VOL. 36, NO. 6, NOVEMBER 2000

Fig. 5. Size dependence of the total reduced energy of the seven considered
configurations as a function of edge lengthL. (a) Results show the reduced
energy density for the configurations as a function of element length up to 2
�m. (b) and (c) Product of reduced energy and reduced length is plotted against
edge length for better distinction between the curves. Replacement of the flower
by theC state and then by the Landau state, which marks the transition from
high-remanence to domain states is shown in (b). Further transitions of the
ground state from the Landau to the diamond and the single cross-tie pattern
were found for increasing element size (c).

one of the former configurations. This is the reason for plotting
the energy curve of the flower state with a dashed line.2

The first low-remanence domain state that becomes favorable
with increasing element size is the Landau pattern at about

2We investigated the possibility of whether the flower state could become
metastable again for larger sizes, due to a small energy barrier separating it in
configuration space from theC andS configurations. To answer this question,
we used constrained calculations, where we assigned fixed in-plane directions
to the same two vectors in the center of the end faces, which we had monitored
in Fig. 6 as a function of element size. Rotating these vectors systematically,
to induce the “buckling” symmetry of theC state, we calculated the energy as
a function of rotation angle. For different element sizes up toL = 2 �m, we
always observed an energy decrease with increasing rotation angle. Therefore,
no indication for metastability at larger sizes was seen. The calculated energy
decrease for a given rotation angle (values of10 J for a rotation angle of
0.5 were typical) became smaller with increasing size, however, indicating that
a small defect could stabilize the flower state by pinning.

Fig. 6. Determination of the critical element sizes for which the flower state
is replaced by theC- orS state. Transition to theC state occurs slightly earlier.

250 nm. This might be expected, because it consists of only four
domains that can efficiently close the flux and the total wall
length is small. The reason why this configuration gets again
replaced by another, energetically more favorable one at larger
element sizes, is the existence of a 180wall segment that has
a much higher energy in thin films than, e.g., 90walls, where
the dipolar energy is reduced due to the smaller wall angle.

To make this qualitative argument more precise, we calcu-
lated the energies and wall profiles of 180and 90 symmetric
Néel walls in infinitely extended thin films (see Fig. 7). This was
done for SP1 parameters using the method developed by Riedel
and Seeger [20]. The transition from symmetric to asymmetric
Néel walls should occur clearly above the thickness of SP1 (see,
e.g., [21]). Essential is the strong dependence of wall energy
on wall angle , predicted already by Néel [22] to

(2)

With a fit to the energy of the 180wall, this formula is a very
good approximation. We also note that the extension of the loga-
rithmic tail of the wall amounts to about 10m. This can be esti-
mated for general material parameters using
[23] and means that we clearly deal with interacting Néel walls
in these thin-film elements.

Returning to Fig. 5, we notice that at about 1.1m, the
Landau pattern is replaced as the ground state by the diamond
structure, which possesses only 90walls. At still larger
sizes, the more complicated cross-tie patterns take over, which
achieve a further reduction in energy due to the reduced total
length of 90 walls. For our parameters, this occurs at about

4.3 m. Our algorithm and our equipment reached their
limit at a length of about 5 m. Therefore, a further ground
state transition from the single cross-tie to the double cross-tie
pattern (which might occur at about 8 m) could not be
confirmed.

IV. DOMAIN MODELS FOR THEMETASTABLE STATES

Analyzing the investigated patterns using domain models al-
lows us to understand the mechanisms leading to their forma-
tion. In addition, it makes it possible to check efficiently wider
parameter ranges and extrapolate to sizes that are not accessible
to micromagnetic computations. Therefore, such models were
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Fig. 7. (a) Wall profiles for symmetric 90and 180 Néel walls calculated
with the method of Riedel and Seeger for the parameters of SP1 in an infinitely
extended thin film. (b) Corresponding variation of the wall energies as a function
of wall angle. Comparison with Néel’s simple original model is included.

intended to serve as a link between micromagnetics and domain
theory, as outlined, e.g., in [21] in the context of closure do-
mains.

The low-remanence states (with the exception of the Landau
state, as we will demonstrate below) can be modeled fairly pre-
cisely by regular constant-magnetization domains. These do-
mains are separated by low-angle Néel walls, which distribute
their charges to some extent into the neighboring domains. For
this reason, weak, more or less uniform charges are present in
almost all domains, in contrast to domain patterns in bulk ma-
terial. Characteristic for the high-remanence states, however, is
the formation ofstronglycharged domains.

As examples, we concentrate on domain models for two states
that emphasize the importance of charged domains: thestate
and the Landau state. The features of these configurations can
be derived from the fact that the stray field energy is reduced
efficiently, if the charges are uniformly distributed.

A. Domain Model for the State

This underlying principle of uniform charge distribution be-
comes evident, if we try to construct a charge-free wall that sep-
arates the edge-domain of a thin-film element from the basic do-
main, which is assumed to be magnetized along the long edge
(see sketch of the domain model for thestate in Fig. 8).

Fig. 8. (a) Locus of a charge free wall for theC or S state. Magnetization
in the longitudinal domain is assumed to be oriented horizontally. (b) Domain
model, where in addition a rotation segment in two corners was assumed. (c)
Magnetization maps of them -component with energies connected to the
model are indicated with and without averaging using a Gaussian filter.

The condition for a charge-free wall is simply

(3)

where and represent the magnetization directions in the
two domains and is the wall normal. If the -component of
the magnetization in the edge domain increases linearly with
the -coordinate as , this condition reads as

(4)

leading to a differential equation for the curve describing the
locus of the wall of the state

(5)

The integration constant follows from the condition that the
wall position at 0 has to be

(6)

The other boundary condition at the opposite end of the short
edge 0 for 0 determines the extensionof the edge
domain in terms of the width of the thin-film element

(7)

In this way, the form of the walls observed experimentally as
well as in our micromagnetic simulations follows naturally.

We refined the domain model by adding rotation segments
of the magnetization in those two corners, where again charges
would be created by a magnetization meeting bluntly the
long edge and by smoothing the magnetization pattern with a
Gaussian filter according to

(8)
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Fig. 9. Equivalent degenerate configurations for theC andS states. States are
grouped according to conservation of the magnetization along the short edges
as expected for hysteresis loops with a field along the long edge.

The parameter is counted in units of the inverse exchange
length . Two patterns (with and without the smoothing
operation) prepared according to this recipe are shown in Fig. 8.
Optimization of the smoothing parameter leads on a coarse grid
of cells to an energy that is only about 6% above
the one obtained by numerical energy minimization. This means
that with much less numerical effort, a realistic estimate for the
energy is obtained.

From the necessity of charge-free walls, also the four equiva-
lent states for the and configurations follow naturally. They
are depicted in Fig. 9, grouped according to conservation of the
magnetization along the short edge of the element. This would
be expected for magnetization loops in a field parallel to the long
edge.

Similarly in the flower state, two (instead of one) edge
domains are formed, occupying each only half of the element
width and extending therefore only half as wide into the
element, namely, . This leads to a slightly higher
remanence, making the flower state the preferred configuration
in high fields parallel to the long edge.

B. Domain Model for the Landau Pattern

In a similar manner, the Landau pattern can be analyzed.
Here, the central 180-Néel wall has about 9.5 times as much
energy than does a 90wall (compare with Fig. 7). A reduction
of the wall angle accompanied by a charge distribution could
again be achieved by a linear variation of the magnetization di-
rection, this time in the domains along the long edge of the el-
ement. The same reasoning as outlined above is applied, this
time with the closure domain magnetized homogeneously along

and allowing a linear variation of in the longitudinal do-
mains. Under this assumption, the locus of the wall (the-co-
ordinate in terms of ) can be determined to

(9)

One free parameter remains that describes the maximum
value of at the wall separating the longitudinal domains
(for the state, the parameter was simply one). Calculated
wall curves for different values of this parameter are shown in
Fig. 10.

The optimum value for with SP1-parameters was found by
minimizing the energy of an accordingly constructed domain
model with respect to on a grid of cells. We
obtained 0.59, corresponding to a vertex position at about

(instead of just ) and a wall angle of 145
instead of 180. This means already only about one-half of the
wall energy.

Fig. 10. (a) Locus of charge-free walls between an exactly vertically
magnetized closure domain and a longitudinal domain in which the
magnetization is allowed to rotate linearly away from the horizontal edge.
Different amounts of maximum rotation leading to different reductions of the
180 wall angle are compared. (b) Domain model of the whole element is
sketched, of which (a) represents the lower left quarter. (c) Configurations
and energies connected with this model, with and without averaging using a
Gaussian filter.

This result for the domain model of the Landau pattern should
be contrasted with the energy for a diamond pattern, which we
obtained by a simple arrangement of 90walls, i.e., without al-
lowing charges in the domains (corresponding to 0 in terms
of the model for the Landau pattern). Orienting the magnetiza-
tion along the four [100]-directions and again using a Gaussian
filter to smooth the wall transitions appropriately, we found an
optimized energy of 0.00515 . Although a model with

0 for the Landau pattern yields results 50–60% above the
correct result, this is already within 12% of the result after nu-
merical relaxation, demonstrating again the large (energy) dif-
ference between 90and 180 walls.

C. Charge Distributions of the Investigated Patterns

To check the validity of our domain models using charged
domains, we compared the charge patterns of the investigated
domain structures. These charge patterns are also expected to be
seen in MFM observations [24], [25], if tip sample interactions
are not dominating the contrast.

For all eight different patterns, we display in Fig. 11 the mag-
netic flux entering a column of our discretization grid oriented
along the -direction (the smallest dimension of the platelet).
This quantity, which is a function of the in-plane coordinates
and , is proportional to the magnetic surface charges plus the
averaged volume charges over the-direction

(10)

For all patterns, the contrast was enhanced with the same
grayscale transformation to bring
out the characteristic features more clearly.

The description of the high-remanence states by charge do-
mains appears to be at least a good approximation. In the low-re-
manence configurations, the charge concentration in the 180
wall of the Landau state and the corresponding reduction in the
90 walls of the diamond configuration become visible. The
continuation of the game, to distribute charges at the expense

This document is a preprint of: W. Rave and A. Hubert, “The Magnetic Ground State of a Thin-Film Element,” in IEEE
Transactions on Magnetics (TRC), vol. 36, no. 6, Nov 2000. DOI:10.1109/20.914337

© 2000 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



RAVE AND HUBERT: MICROMAGNETICS IN A THIN-FILM ELEMENT 3893

Fig. 11. Charge patterns of the investigated configurations displayed with
equivalent contrast. Element size isL = 2 �m. Although Fig. 1 presented a
contrast expected for Kerr or Lorentz microscopy, the above images could be
observed with magnetic force microscopy.

of a minimum amount of wall length, can be followed in the
cross-tie structures.

V. CONCLUSION

The investigation of the energies of possible magnetization
patterns in a rectangular thin-film element revealed that at
least five different “ground” states are possible for varying
element sizes with a thickness supporting symmetrical Néel
walls: starting at small sizes, and increasing the size, we
found flower, , Landau, diamond, and single cross-tie states.
Multiple cross-ties are expected for larger elements making the
connection to extended thin films of this thickness.

The sequence of patterns as a function of size can and will be
modified for different film thickness, because in thicker films,
supporting asymmetric Néel and Bloch walls, no cross-tie walls
will be found any more.

The rectangular shape has to be made rather small to make a
high remanence state absolutely stable. Uniformly charged do-
main patterns can fairly well describe structures with such a high
magnetic moment. Appropriately curved walls are a signature of
these configurations, which will also explain features observed
in applied fields, such as the concertina pattern.

APPENDIX I
MICROMAGNETIC METHOD

As stated in (1), the normalized total magnetic energy per
volume was calculated, taking into account uniaxial anisotropy,
exchange, and demagnetizing energy contributions

(11)

Using the gradient of this energy density, the “effective field”

(12)

obtained by differentiating the total energy density with respect
to the local magnetization , was minimized. To this end, an
iteration algorithm that alternatingly performs some (small) re-
laxation steps in the direction opposite to the local effective field
and then, after several successful such steps, tries to perform a
large step by a complete function minimization with respect to
the present gradient direction, was applied [26], [27].

The method can be viewed as a way of solving the
Landau–Lifshitz equation without the precession term but with
an adaptive relaxation coefficient , as first described in [28].
An iteration step was performed according to

(13)

until the component of the effective field perpendicular to the
magnetization was everywhere smaller than a certain fraction
of the anisotropy field . This fraction was taken
between 10 and 10 .

Although the local energy terms of anisotropy and exchange
are easily calculated, the demagnetizing field term together with
the energy minimization are the critical parts in solving most
micromagnetic problems.

Our algorithm to calculate the demagnetizing energy and de-
magnetizing field is the generalization of the method published
in [29] from two-dimensional (2-D) to three-dimensional (3-D).
At first, we determine volume and surface charges according to

(14)

with being the outward surface normal. Knowing the charges,
the scalar potential of the demagnetizing field is given by

(15)

which leads to the six-fold integral for the stray field energy

(16)
Numerically, these standard expressions are approximated by

subdividing the computational region into paral-
lelepipeds (we also use the terms cells or finite elements). Mag-
netization vectors in the corners of the cells are assumed, and av-
eraged potential values over their volumes and surfaces are cal-
culated (see sketch in Fig. 12). For the potential in the interior,
we end with cell–cell and cell–surface interactions, whereas for
the potential values on the bounding surfaces, cell–surface and
surface–surface interactions have to be evaluated. All necessary
integrations for the interactions between charged volume and
(differently oriented) surface elements can be carried out ana-
lytically. In this respect, the present approach might be traced
back to [30]. The precise analytical expressions we use can be
found in [21, pp. 123–124]. Here, it may suffice to say that we
denote the interaction coefficients by , , , etc.,
where the indexes represent the number of integrations along,
, and .
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Fig. 12. Surface and volume charges of the parallelepipeds subdividing
the computational region. Interactions among these charges are indicated
schematically.

Due to the three possible orientations of the surface elements,
four sums arise. For example, the potential values in the interior
of the cells are thus written as

(17)

The surface charges on the different bounding surfaces of the
computational region are denoted by , etc. On
the bottom side of the computational region, the surface poten-
tial is calculated by

(18)

Analogous expressions exist for the other surfaces. To com-
pute these expressions in an acceptable time, the Fourier trans-
form is applied, which cuts the computation time down from the

order to .
With proper zero padding, the convolution theorem can be ex-
ploited [31]. For the example of the potential values in the inte-
rior (17), the following transforms are required (Fourier trans-
formed quantities are marked by a tilde sign in the following,
the convolution in real space is represented by the symbol):

FFT

FFT

FFT

FFT (19)

The Fourier-transformed potential contributions are summed
in the frequency domain

(20)

and transformed back to the spatial domain

FFT (21)

The algorithm is further accelerated by the application of Par-
seval’s theorem when performing energy minimizations in the
relaxation algorithm for which the backward transform of the
potential is not needed, because the effective field is only re-
quired for the finally executed iteration step.

An additional factor of about 2 is gained by combining
Fourier transforms of different potential contributions or using
intermediate results of quantities to be transformed in several
dimensions. This takes advantage of the linearity of the Fourier
transform and is the reason why we use one-dimensional
(1-D) FFT routines. As an example, consider the 3-D FFT
transformation of the volume charges (see Fig. 13). These are
needed for the potential in the interior of the cells, but the
intermediate result after two transforms can be used already to
compute a part of the surface potential, say, on the-surfaces.
Thus, 2-D-transforms of size are saved, if the data
array can be accessed at that stage. Similarly, 2-D-transformed
slices of the array of volume chargesare needed for the
potential values on the other surfaces in combination with the
interaction coefficients and . In this case, first the
common transform along is performed, which is taken as the
starting point for the following transformations alongand
[see Fig. 13(b)]. In an analogous way, the inverse transform
of the potential can be arranged. As schematically sketched
in Fig. 13(c), the common transforms alongand of the
potential contributions due to volume and-surface charges
and the common transform alongof the contributions of the

- -surface charges are performed together. For the poten-
tials on the surfaces, which also consist of four terms each,
additional possibilities were exploited to combine transforms
in the forward as well as in the backward direction.
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Fig. 13. Common FFT transforms of different potential contributions: (a)
Volume charges�, transformed alongx andy, can be used to calculate the
potential contribution on thexy-surfaces before the transform alongz leads to
the contribution to the volume potential. (b) Intermediate result of the volume
charges transformed alongz is used for both potential contributions on the
xz and yz surfaces. (c) Backward transform of the potential in the interior
combines common transforms alongx andy of the contributions due to volume
andxy-surface charges and common transform alongz of the contributions
due toxz- andyz-surface charges.

APPENDIX II
SWITCHING FIELDS

Having investigated the zero-field state, we were of course
also interested in the switching behavior of such rectangular
thin-film elements. In determining the switching fields, we fo-
cused on the simple case of a field aligned exactly parallel to
the long particle axis. In high positive fields, the approach to
saturation must occur in the symmetry of the flower state due
to its larger magnetic moment along the long edge compared
with the and states. Reducing the field, there had to be
a point at which the flower state becomes unstable. For pos-
itive fields, this marks a continuous symmetry breaking into
the state; otherwise, we expected a discontinuous switching
into a near-saturation state of opposite polarity. Depending on
the exact field history, one or the other of these states should
form the starting configuration for magnetization reversal. As
stated before (13), we studied these switching processes in the
limit of infinite damping, without taking into account the preces-
sion term of the Landau–Lifshitz-equation. All three switching
points, that of the flower, the state, and the state depend on
particle size and were investigated for two sizes, 500 nm
and 2 m, to get an idea of the switching fields and identify
the possible switching modes.

Fig. 14. Transition from theC orS state to the flower state in an applied field
along the long edge of the sample for the element sizes (a)L = 500 nm and (b)
L = 2�m. Boxes in the magnetization maps indicate the zone of integration of
them -component.

A. Transitions Coming from High Positive Fields

We first tried to determine which branch of the solution is rel-
evant coming from high fields. The expected second-order tran-
sition from the flower configuration into the- or state was
studied, exploiting the integral value of the -component as
the order parameter. Computing this parameter in half of the el-
ement (in the state, a cancellation would occur due to another
mirror symmetry), gives a convenient measure for the decay of
the or states in an applied field.

This is demonstrated in Fig. 14 for theand states, which
will be nucleated coming from high fields already at a positive
field of approximately 54 for 500 nm or at about 37
for 2 m (the value of is 12.5 Oe or about 1000 A/m
for our parameters).

The transition fields for the states are slightly smaller, again
showing that the states are marginally preferred. The differ-
ences decrease with size, however, indicating that both patterns
are nearly degenerate in practice. As mentioned before, this de-
generacy can be lifted in oblique fields, leading to the selec-
tion of an state, but a conversion will only happen if the field
was high enough, because the edge magnetization is conserved
during reversal (it takes place either from a- to another - or
from an - to another -configuration).

Because the occurrence of thestate seemed clearly pos-
sible, we decided to investigate the reversal of bothand
states for which hysteresis loops for the smaller size of 500
nm are shown in Fig. 15.

B. Switching of a Small Element with 500 nm

Finer details of the demagnetization curves can be seen in
Fig. 16. In the -configuration, two irreversible events are
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Fig. 15. Hysteresis loops for the high-remanence states and an element size
L = 500 nm in a field applied along the long edge. Transition from the flower
to theC state occurs at'54H . Due to the near degeneracy of theC andS
states, both loops after this first branching process are displayed.

clearly discernible. First, at about , the edge
domains expand, destroying a faintly developing concertina
pattern and creating a vertical 180wall segment between
them. In a second step, the final reversal takes place initiated
for this element size close to the lower two corners.

A different reversal mechanism is observed for thestate.
Here, the growth of the edge domains leads to the formation of
a third domain, interconnecting them. This probably irreversible
process shows weakly up in the magnetization curve by a slight
“bump.” The curved domain walls between this inner domain
and the edge domains contain the nuclei for the complete re-
versal of the element.

The reversal mechanisms were deduced from the evaluation
of the susceptility. As outlined in detail in [32], the switching
event is almost always “announced” before the actual irre-
versibility by the divergence of the reversible susceptibility
in the switching nucleus. Extrapolation of the inverse square
of this susceptibility (see Fig. 17) can thus circumvent the
difficulty to calculate a field corresponding to a nonequilibrium
state (our, and practically all other, micromagnetic programs
are designed to calculate equilibrium states). The susceptibility
was defined by

(22)

and evaluated in a region extending three to four times
around the position that showed the highest values in the
thin-film element (displayed as dark regions in the suscepti-
bility maps of Fig. 17; they are derived from the last two stable
computed states before the “observed” switching event). Grid
independence was again achieved at about one to two cells per
exchange length for a problem size corresponding to
about .

For the state, a still finer discretization with
cells was tried, because a different switching mode was found
for 2 m, but the result remained unchanged. The other
region with high susceptibility in this configuration at the top
middle could not well be extrapolated. For thestate, the total
susceptibility was also a good measure. The diverging suscepti-
bility becomes also visible in the increasing slope of the magne-
tization curve. As mentioned in Section IV, the reversal mech-

Fig. 16. Second quadrant of the hysteresis loops in Fig. 15. Demagnetization
curves forC and S configurations for the element sizeL = 500 nm are
displayed withm -magnetization maps for several characteristical field values
to visualize the reversal modes. To guide the eye, a few vectors are inserted to
indicate the general magnetization direction.

Fig. 17. Study of irreversibilities in theC andS configurations for the element
sizeL = 500 nm. Square of the inverse susceptibility is extrapolated to zero
to derive the switching field. Nucleation modes are visualized by maps of the
susceptibility, where dark regions mark the areas, where this quantities shows
the highest values. Discretization used was192� 96� 2 cells.

anisms conserve the magnetization orientation along the short
edges and the final states are of the same type as the starting
configurations. The shape of the walls of the edge domains has
to be inverted to create again charge-free walls compatible with
the inverted interior magnetization.

C. Switching of an Element with the Benchmark Parameters

Due to the fact that we could not unambiguously clarify the
magnetization reversal for this size, we did not put our results
concerning the hysteresis properties in the regular part of the
paper. Nevertheless, we observed some features that were inter-
esting enough to serve as a starting point for further investiga-
tions.

The demagnetization curves for theand states for
2 m are presented in Fig. 18. Compared with 500 nm,
a more pronounced development of the concertina pattern
leads to distinct jumps in both configurations when the edge
domains interconnect. The development for thestate was
similar to the one observed for 500 nm (see Fig. 19). After
a first irreversible magnetization jump at , where
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Fig. 18. Demagnetization curves forC andS configurations for the element
sizeL = 2 �m. Loops represent the magnetization curves found on the grid
with 384�192�2 cells. Other reversal mode by the vortex creation, observed
with 256 � 128� 4 cells, is also indicated.

Fig. 19. Development of theS state concertina pattern with a first irreversible
process at a field of�3.9H . Again, a configuration with three transverse
domains leads to magnetization reversal with the same nucleation mode as for
L = 500 nm, which is shown by the susceptibility map.

domains branched off from the edge domains get connected,
a relatively stable three-domain configuration is created. The
switching field is reduced from 30.7 at 0.5 m to
approximately 7.0 for this element size. The reversal
mode remained the same as for the smaller element; i.e., the
susceptibility maximum lay still in the curved inner walls.

For the state, the behavior became more complicated for
2 m than it was found in the smaller element. A first

magnetization jump occurred at about4.7 . At this field,
two of the four transverse domains of the concertina collapsed,
and the edge domains became interconnected. With a further
decreasing field, the remaining two transverse domains grew
steadily, accompanied by a gradual rotation of the magnetization
in their interior (see Fig. 20).

By this process, a rather high negative magnetization was
reached. The configuration appeared remarkably stable and was
only destroyed when the lower horizontal walls of the transverse

Fig. 20. Development of theC state concertina and the ensuing magnetization
reversal. First irreversible process serves to connect the edge domains,
eliminating two transverse domains. Second configuration change leads to the
formation of a 360 wall, when the lower edge of the element is touched by
the domain walls. Final reversal needed a third irreversible process and was
achieved when the remaining horizontal walls touched the upper edge.

domains touched the lower long edge. The resulting collapse of
the transverse domains led to the formation of a 360wall in the
middle of the element. Finally, this wall was also destroyed by a
third irreversible process at15.5 , when the remaining hor-
izontal walls reached the upper edge completing the inversion
of the state.

Although this reversal mode was observed with
cells, another possible reversal mechanism was noticed (“un-
fortunately”) on a grid with cells. In this case,
a vortex was generated at the wall cluster in the middle of the
upper long edge, which entered the 180wall at a field of 11

. This is illustrated by a transient state in Fig. 21, where the
two shallow domains at the upper edge and the transverse do-
mains are already almost reversed (note the tiny black dot in the

-component).
From this, it is difficult to decide which one is the true reversal

mode. Although we have the tendency to believe that the result
on the finer grid is the correct one, only another calculation on
an even finer grid, which we could not perform any more, could
have supported this supposition. Thus, the benchmark problem
conserves yet another riddle, which waits to be unveiled.

Another observation might be interesting in this context.
Namely, the immediate argument that the omission of the
precession term in our method suppresses the vortex formation
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Fig. 21. Alternative reversal mode of theC state forL = 2 �m by the
generation of a vortex. Note that a transient state is shown here. Vortex entered
from the upper long edge and is visible in them -magnetization map as a
small black dot.

and makes the occurrence of the 360wall possible is not so
straightforward either. When we looked closer at the compo-
nents of the effective field, we found that its-component,
which could generate the vortex by a torque on the magnetiza-
tion oriented along , just passes through zero, where the wall
is located and the vortex should be generated. In fact, this is just
the reason why the wall is sitting there. In addition, the high
symmetry of the situation leads to a degeneracy with respect
to the sign of the -component. In this respect, the situation
is resembling the type of “catastrophic” switching discussed in
[32]. Altogether, the rich variety of solutions that can be found
in such seemingly simple situations is remarkable. From the
experiment, 360 walls are well known, and in practice, both
reversal mechanisms that appear not to be separated by a large
energy barrier probably play a role. A dynamical calculation
would be very desirable for such a case.
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Alex Hubert (M’96–SM’96) was born in Darmstadt, Germany, in 1938. He
received the Diploma Thesis and the Ph.D. degrees in physics from Bonn and
Munich.

From 1966 to 1973, he was with the Max Planck Institut für Metallforschung
in Stuttgart, where he specialized on the micromagnetic study of magnetic do-
main walls. This led to the “discovery” of the two-dimensional vortex structure
of asymmetical Néel and Bloch walls and to his inaugural dissertation “Theorie
der Domänenwände in geordneten Medien,” which was also published as a
book. In 1975, he became a Professor for Material Science at The University
of Erlangen. There, he set up a lab, which became well known for magnetic
imaging using the Kerr effect and numerical micromagnetic investigations.
In 1998, together with his coauthor Rudolf Schäfer, he published a book
containing his life long experience with magnetic microstructures:Magnetic
Domains—The Analysis of Magnetic Microstructures. He spent sabbaticals at
the IBM Research Center in Yorktown Heights, the Magnetics Technology
Center of Carnegie Mellon University, Pittsburgh, the Institut für Physikalische
Hochtechnologie Jena, and the Institut für Festkörper- und Werkstofforschung,
Dresden.

Dr. Hubert died, much too early, on February 16, 1999.
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