
Low-Energy DSP Code Generation
Using a Genetic Algorithm

�

Markus Lorenz, Rainer Leupers, Peter Marwedel
Dept. of Computer Science 12

University of Dortmund, Germany
email:

�
lorenz, leupers, marwedel � @LS12.cs.uni-dortmund.de

Thorsten Dräger, Gerhard Fettweis
Mannesmann Mobilfunk Chair For Mobile Communications Systems

Technische Universität Dresden, Germany
email:

�
draeger, fettweis � @ifn.et.tu-dresden.de

Abstract
This paper deals with low-energy code generation for a
highly optimized digital signal processor designed for mo-
bile communication applications. We present a genetic algo-
rithm based code generator (GCG), and an instruction-level
power model for this processor. Our code generator is capa-
ble of reducing the power dissipation of target applications
by means of two techniques: First, GCG minimizes the num-
ber of memory accesses by using a special list-scheduling al-
gorithm. This technique makes it possible to perform graph
based code selection and to take into account the high in-
terdependencies of the subtasks of code generation by phase
coupling. In addition, GCG optimizes the scheduling of pro-
cessor instructions with respect to the instruction-level power
model based on a gate level simulation. Experimental re-
sults for several benchmarks show the effectiveness of our
approach1.

1 Introduction
In the recent years the field of mobile communication be-
came more and more a growing market. Especially the bat-
tery lifetimes have a great impact on whether a mobile device
is successful on the market. Until now most research effort
in reducing power consumption has focused on the field of
low-power design of integrated circuits (for an overview see
e.g. [18], [19]). But there is also a need for low-power soft-
ware optimizations because of the increasing trend towards
mapping embedded applications to programmable proces-
sors. Recent results indicate that power consumption can in
fact be reduced at the software level. Known techniques in-
clude reordering of processor instructions [22, 13], special
instruction and data encoding [22], and avoiding power in-
tensive processor instructions like memory accesses [7]. An
overview of low-power optimizations is given in [23, 16].

Embedded processor based systems have to meet real-time

�
Publication: ICCD, Austin, Texas (USA), September 2001, c

�
IEEE

1This work has been sponsored by the German Research Foundation
(DFG) and Agilent Technologies, USA.

constraints while minimizing area and energy2 consumption.
Thus designers try to meet the given timing constraints by
adding instruction level parallelism to processors [11]. Un-
fortunately, the use of heterogeneous register files for reduc-
ing chip area and power consumption leads to irregular pro-
cessor architectures (our example in this paper is the M3-
DSP [6]) which can be rarely handled by traditional compil-
ers. This forces the industry to develop new compilers for
each processor family supporting their particular features.
Compilation is done by transforming the given source pro-
gram into an intermediate representation (IR) and perform-
ing machine independent standard optimizations. The source
program consists of several basic blocks which can be repre-
sented as a set of DFGs (data flow graphs). After this trans-
formation the code generator has to map the IR to assembly
code by solving the following subtasks:

� CS (code selection) covers the nodes of a DFG using
suitable processor instructions.

� IS (instruction scheduling) determines the execution or-
der of the processor instructions.

� RA (register allocation) determines which variables
have to reside in registers or have to be spilled to mem-
ory.

Due to the strong interdependencies of CS, RA and IS it
is important for efficient code generation (particularly for
DSPs) to perform all subtasks simultaneously by means of
a complete phase coupling.

Optimization should be possible for different criteria like ex-
ecution time, energy dissipation or code size. A big chal-
lenge concerns the handling of the trade-off between these
objectives. For instance, in the field of mobile communica-
tion it is essential to generate assembly code which meets
the real-time constraints and minimizes the energy consump-
tion. However, it is often difficult to find a suitable compro-
mise between these two goals because energy consumption

2In contrast to the term ”power”, ”energy” additionally considers the
number of clock cycles of the program, and is more interesting for battery-
driven embedded systems.

not only depends on the number of processor instructions
but also on their schedule. Thus, it is important that low-
energy optimizations are performed under given real-time
constraints.
In order to compare different instruction schedules with re-
spect to the energy consumption it is very important to have a
suitable cost model that allows for a quick evaluation. For in-
stance, Lee et al. published an instruction-level power model
based on measurement of the energy consumption of a single
instruction (base energy cost) and of the switching activities
of successive instructions (overhead energy cost) [13]. Fur-
ther power models based on that work can be found e.g. in
[21, 20].

It is already known (and is also confirmed by our power
estimation for the M3-DSP in section 3) that the number
of memory accesses has a more significant contribution to
power consumption than other processor instructions. How-
ever, most traditional code generation techniques are based
on tree based code selection algorithms [24]. These are
runtime-efficient, but one of the main disadvantages is that
using a tree based technique usually results in superfluous
memory accesses. This is due to the decomposition of graphs
into trees and performing separate code selection for each
tree. Spill code is then added in a subsequent phase. We
briefly compare the graph based and the tree based code se-
lection for the following example: ���������
	�������������	��

Fig. 1: Graph based and tree based code generation

Fig. 1 represents the corresponding DFG (a) and its decom-
position into two trees (b). The resulting instructions are
listed below. In this case splitting into trees is done after
identifying the common subexpressions (CSE) (here: the ”+”
node).

On general-purpose processors with large homogeneous reg-
ister files, CSEs would normally be kept in registers, and
the register allocation phase in the compiler would aim at
avoiding register spills and reloads. However, this approach
usually does not work for DSPs with an irregular, special-
purpose register architecture. The reason is that DSP regis-
ter files show a very small storage capacity (frequently only

a single value), so that live values cannot be kept in regis-
ters during several instruction cycles. Sometimes DSP reg-
isters even cannot be spilled at all, so that from a compiler
viewpoint, the memory is the only ”safe” resource for stor-
ing CSEs. Therefore it is very common in DSP compilers
that CSEs are stored in memory right from the beginning and
are reloaded into registers only at the time of further CSE
uses [15, 1].

Only very recently techniques have been proposed that are
capable of keeping (at least some) CSEs in special-purpose
registers [4, 14] by means of graph based (instead of tree
based) code selection. The code generation technique de-
scribed in this paper uses a similar approach, but in contrast
to earlier work focuses on energy optimization.

Phase coupled code generation techniques based on integer
linear programming (ILP) (e.g. [25, 12]) allows generating
optimal solutions for the given model. However, the com-
plexity of the ILP-solver allows computation of optimal so-
lutions only for small benchmarks or only for some code gen-
eration subtasks. A heuristic phase coupled code generation
technique (AVIV) for VLIW-architectures is presented in [8].

Genetic algorithms have been proven very effective in find-
ing optimal or near optimal solutions in huge search spaces.
For this reason we are using a special list-scheduling algo-
rithm in combination with a genetic algorithm. In contrast
to earlier work using genetic algorithms for scheduling prob-
lems (e.g. [5, 26]) we solve the code generation subtasks CS,
IS and RA.

The remainder of this paper is organized as follows: The
next section gives an overview of the architecture of the M3-
DSP. In section 3 we introduce the instruction-level power
model that we use for low-energy optimization. The new
low-energy code generation algorithm GCG is described in
section 4. We demonstrate the effectiveness of our approach
in section 5 and conclude the paper with a summary.

2 Architecture of the M3-DSP
The M3-DSP is an instance of the scalable DSP platform for
mobile communication applications described in [6]. In or-
der to ensure constraints with respect to real-time processing,
chip area, and energy dissipation, the M3-DSP architecture
has some special features (fig. 2): It consists of 16 data paths
(slices) which allow for processing either on a single data
path or on all 16 data paths in parallel according to the SIMD
(single instruction multiple data) principle. For demonstrat-
ing the basic technique of GCG and our instruction-level
power model it is sufficient to focus on code generation for
the single slice mode (shaded area in fig. 2).

In order to enable an effective use of all data paths in parallel
the memory is organized as a group memory. Hence, each
memory address refers to group of 16x16-bit words. The
addressed group is loaded into the intermediate (buffer) reg-
ister M from which the values are routed to the registers in
the data paths by an application specific interconnection net-
work. The use of the special-purpose registers A, B, C, D
and Accu is allowed for the following operations3:

3For the sake of simplicity we assume that subtractions are realized by
adding with complemented registers.

Fig. 2: Coarse architecture of the M3-DSP

ADD: Accu = � A, B, Accu � + � A, C, D, Accu �
MUL: Accu = � A, B � * � A, C, D, Accu �
MAC: Accu = � A, B, Accu � + � A, B � * � A, C, D, Accu �
For instance, Accu = B + A is a valid instruction whereas
Accu = D * A is invalid. Further processor instructions are
load and store instructions for memory (Mem) accesses and
immediate load for constants (Int) and also data transports
between registers.

LD: M = Mem
ST: Mem = � A, B, Accu �
LDI: � A, B, C, D � = Int
DT: � A, B, C, D � = M
DT: � A, B � = � Accu �

3 Instruction-level power model
An accurate cost model is needed in order to obtain power or
energy optimized code. Such a model is used to estimate the
consumed power or energy of a program. It is represented by
values of average power dissipation of certain combinations
of instructions. In our case the power dissipation is not phys-
ically measured but simulated at the gate level with a zero
delay model using Synopsys Power Tools. According to the
reference manual [10], the accuracy is within 10 - 25 % of
SPICE simulation.

Following Lee et al. [13] the cost model is based on results
obtained by simulating pairs of instructions. In contrast,
however, our power model does not rely on base and over-
head costs. Just using the simulation results, as described in
the following, yields much better approximations in our case.

Gate-level simulations are very time consuming. Therefore it
is preferred to simulate short instruction sequences. The M3-
DSP comprises a four-stage-pipeline. Hence, simulating a
pair of instructions is done after filling the complete pipeline
with this pair to avoid transitions other than those between
the two instructions. All instructions of the M3-DSP run
through the same pipeline stages, each stage requiring one
clock cycle. Hence, the pipeline is filled after four clock cy-
cles and a pair of instructions always takes two clock cycles.

We do not distinguish between asymmetric transitions (tran-
sitions where the power dissipation of the transition I � to I �
is not equal to the dissipation of I � to I �). Differentiation is
only possible with a high effort since only vertical simula-
tion in time can be performed, i. e. the status of the processor
is examined in each clock cycle. Thus, symmetric transitions
are assumed. Fig. 3 illustrates the pipeline during the verti-
cal simulation process and the mixed transitions between two
clock cycles. U indicates an undefined instruction.

��

��

2,1

1,22,1

1,2

1,2

2,1

2,1

1,2

SimulationPipeline Filling

I �
I �
I �

i+3

I �
I �
I �

I �

I �I �

I �

i

I �
I � I �

i+2

I �
I �

I �

i+1i-4 i-3 i-2 i-1Clock Cycle
Pipeline Stages
Fetch
Decode I
Decode II
Execute

U
U
U U

U

I �

U

I �I �I �
I �
I �

I �

I �I � I �

Fig. 3: Pipeline during simulation

As a first step a cost model is developed which does not con-
sider state dependencies, i.e. during the simulation the in-
structions should not change the state of the processor. For
sake of simplicity, all operand values of an instruction have
been set to zero. Table 1 shows a part of the obtained cost
model. The upper half of table 1 comprises costs if the cur-
rent instruction I � is equal to the subsequent one I � . Here
the high power dissipation of memory accesses (LD, ST) is
remarkable. In the lower half of the table both instructions
differ (I ���� I �). Comparing the upper and the lower half sup-
plementary costs for transitions to a different instruction are
evident.

Ins. 1 Ins. 2 Average Power Dissipation [mW]
MAC MAC C 	�
� 	�
 = 17.66

LD LD C 	�
� 	�
 = 25.76
ST ST C 	�
� 	�
 = 21.72

NOP NOP C 	�
� 	�
 = 17.51
DT DT C 	�
� 	�
 = 17.56
DT ADD C 	�
�� ��	�	 = C ��	�	�� 	�
 = 24.72
DT MUL C 	�
�� ����� = C ������� 	�
 = 24.85
DT MAC C 	�
�� ����� = C ������� 	�
 = 24.73
DT LD C 	�
�� ��	 = C ��	�� 	�
 = 25.70
DT ST C 	�
�� ��
 = C ��
� 	�
 = 38.16
DT NOP C 	�
�� �� �! = C �� �!"� 	�
 = 20.18

Table 1: Part of the power cost model

In order to estimate the energy dissipation of a sequence of
instructions the sequence is separated into pairs. For each
pair the power costs are added. But then the first and the
last instruction have been considered only once whereas all
other instructions have been considered twice. Thus, one half
of the costs of the instruction at the start and at the end are
added. This causes a small error because the transition costs
for the first and the last instruction are inprecise. This error
is small for longer instruction sequences, the predicted power

cost for a sequence of � instructions is:�������	��
�������	������� � ����
���� � ��� � �"! �# $&%('
��*) � �*),+.- � ��
��*/ � �*/�0�1 �
The particular costs C

�*) � �32 of the instruction pair I

$
and I4 can

be found in the cost model (table 1).

565655656556565565655656556565565655656556565565655656556565

767677676776767767677676776767767677676776767767677676776767 868686868686868

96969699696969969696996969699696969

:6:6:6::6:6:6::6:6:6::6:6:6::6:6:6:Simulation Virtual

Pipe.

F

D I

D II

E

 Pipe. F.

N

N
N

N
N

. . .

. . .

. . .

. . .
N

N

N N

N
N
N NN

N

N

N
N

N

I �
I �

I �
N

N
N

N
N

N
N

N NI � N

I �

. . .
. . .

. . .
. . .

NI � I � I �
Fig. 4: Simulating an instruction sequence to compare with
predicted power costs

To compare the predicted costs with the simulation result the
pipeline has to be considered. In fig. 4 the inner trapezium
comprises the sequence for which a prediction is to be made.
Unfortunately, it is not possible to simulate just this trapez-
ium. Since the pipeline is filled with undefined instructions
before and after the sequence, the instructions at the begin-
ning and at the end cannot be predicted properly. In order to
avoid prediction inaccuracies due to vertical simulation, we
add defined instructions. Initially the pipeline is filled with
the same instruction e. g. the NOP (N) instruction and at the
end of the sequence the same instruction is added as often as
the pipeline depth defines (in our case four times). If we cut
out the inner trapezium and merge the two outer triangles as
fig. 4 illustrates, we would get another trapezium consisting
of NOPs only. Thus, no inaccuracies are calculated at the
beginning or at the end anymore.

In order to exemplify the use of the power model, fig. 5
shows the graph based example from fig. 1 using two dif-
ferent schedules. The difference is marked gray. Using the
power cost model to calculate the average power consump-
tion of the sequence leads to the energy dissipation by divid-
ing by the clock frequency ;�<3=?>@<3A and multiplying with the
number of instructions � :B � �	��CEDF
G���*�(�H�*��� $ <3I ��� � �����J�H��
G���*�"�	����� $ <3I ��� F� 1 ;	<3=?>@<3A
In our case the clock frequency is equal to 20 MHz. Fig. 5
shows the difference of energy consumption between sched-
ule (a) and schedule (b). Comparing the predicted values
and the simulation result of this example shows that the dif-
ferences are less than 0.5%. Several comparisons of other
sequences confirmed this error range, which indicates suf-
ficient accuracy of sequence prediction for code generation
purposes.

4 Genetic code generator (GCG)
The code generation process of GCG is started after the
source program is transformed into a machine independent

schedule a)

Nop

M = Mem[a]

C = M

M = Mem[b]

B = M

M = Mem[c]

A = M

Accu= B + C

B = Accu

Accu= B * A

Accu= B * Accu

Mem[d]= Accu

Nop

Nop

Nop

Nop

}
}
}
}

}
}
}
}
}
}
}
}
}
}
}
}

}
}
}
}
}
}
}

}

23.46

25.70

25.70

25.70

25.70

25.70

24.72

24.72

24.85

17.66

40.69

36.00

17.51

17.51

17.51

17.51

average
power [mW]

S = 390.64
average power 24.415 mW

energy 19.532 * 10 J

=

=

0.5 *

}0.5 * 17.51

-6

Prediction

Simulation

energy 19.614 * 10 J=

-6

schedule b)

Nop

M = Mem[a]

C = M

M = Mem[b]

B = M

Accu= B + C

M = Mem[c]

A = M

B = Accu

Accu= B * A

Accu= B * Accu

Mem[d]= Accu

Nop

Nop

Nop

Nop

}
}
}
}

}
}
}
}
}
}
}
}
}
}
}
}

}
}
}
}
}
}
}

}

23.46

25.70

25.70

25.70

24.72

28.08

25.70

17.56

24.85

17.66

40.69

36.00

17.51

17.51

17.51

17.51

average
power [mW]

S = 385.86
average power 24.116 mW

energy 19.293 * 10 J

=

=

0.5 *

}0.5 * 17.51

-6

energy 19.382 * 10 J=

-6

Fig. 5: Energy consumption for different schedules

IR. At this level of abstraction the source program is given
by a set of DFGs which are then separately mapped to as-
sembly code. This is done by performing the subtasks IS,
CS, and RA of code generation. One of the main problems
is that there are strong interdependencies between these sub-
tasks. For instance, finding an optimal instruction schedule
does not necessarily result in optimal code with respect to all
subtasks together. Hence, GCG is capable of revising (poor)
decisions made in an early optimization step.
As we have seen in the last section, memory accesses have
a more significant contribution to the energy consumption
than other processor instructions. In order to minimize these
power intensive instructions GCG uses a graph based code
selection technique. Unfortunately, the problem of mapping
graphs to optimal assembly code means solving an NP-hard
problem. Thus, there is a need for an optimization algorithm
capable of finding optimal or near optimal solutions in poly-
nomial time.

Genetic algorithms (GA) have proven to solve complex op-
timization problems by imitating the natural evolution pro-
cess (see e.g. [9, 2] for an overview). A population of a GA
consists of several individuals, each of them representing a
potential solution of the optimization problem. The repre-
sentation of an individual is given by a chromosome which
is subdivided into genes. The genes are used to encode the
variables of the optimization problem. This means that find-
ing a suitable combination of alleles (concrete values) for the
genes is the same as finding good solutions of the optimiza-
tion problem. By applying genetic operators like selection,
mutation, and crossover to the members of the population
the fitness of the individuals will increase in the course of the

generations.
An overview of the main steps of the optimization process of
genetic algorithms is given in fig. 6.

At first all individuals of the
population are initialized (1)
and evaluated (2). Individu-
als which should inherit their
genes to the next generation
are selected probabilistically in
the following step (3). The
crossover operator (4) performs
a recombination of the ge-
netic information by choosing
two individuals and swapping
genes between these individu-
als. Afterwards mutation (5)
creates new gene material by
changing alleles. The result-
ing individuals are evaluated
(6) again.

Fig. 6: Optimization
steps of a GA

The optimization process is iterated until a termination con-
dition (e.g. maximum number of generations or conver-
gence) is met. It is a very important characteristic of genetic
algorithms that suitable gene material is passed to the sub-
sequent generations. This permits one to revise unfavorable
decisions made in a previous optimization phase. For this
reason genetic algorithms are adequate for solving non-linear
optimization problems like phase-coupled code generation.
However, one of the main problems using genetic algorithms
is finding a suitable representation of the underlying opti-
mization problem and using genetic operators which can be
executed very quickly (because they are used several times).
In the next section we first describe the coding mechanism
and then the initialization, evaluation, crossover, and muta-
tion steps of GCG in more detail.

Chromosomal representation
The goal of the chromosomal representation is to encode all
information which is essential for code generation. We as-
sume that the given source program is decomposed into a
set of basic blocks, each represented by a DFG. In our ap-
proach the graph nodes of the intermediate representation are
mapped to special genes of the chromosome (fig. 7) which
are stored in a sequential order.

Thus, each gene of the chromosome represents an operation
like a load or an addition. The values of a gene (allele) ex-
press all information which are necessary for code genera-
tion. These are for example used registers, performed pro-
cessor instruction, execution cycle, and binding of arguments
to special ports of the functional unit4. Swapped input vari-
ables are depicted in fig. 7 by crossing edges (inputs of the
add node).

Initialization
The aim of the initialization is to establish an initial popula-
tion from which the optimization process can be started. In

4Due to the restricted combination of the special-purpose registers in the
data path it is very important for commutative operations to make use of the
opportunity of swapping the input variables.

Dest=Src1 Src2*

Dest=Src1 Src2*

Dest=Src1 Src2LDLD+

Dest= SrcLD

Dest= SrcST

Dest= SrcLD Dest= SrcLD

Dest:
Src:
Op:
CS:
Swapped:

B
Mem
LD
4

no

Dest:
Src1:
Src2:
Op: +
CS:
Swapped:

Accu
A
C

3
yes

Dest:
Src1:
Src2:
Op: *
CS:
Swapped:

Accu
B
A

6
no

...

Fig. 7: DFG and chromosomal representation of a possi-
ble mapping to machine code

GCG the method of initializing an individual is based on the
well-known list-scheduling algorithm [3]. But in contrast to
traditional variants performing a heuristic selection we prefer
a probabilistic selection of the next executable graph node.
Doing this for all individuals of the population we obtain a
set of different potential solutions.
The following steps are performed iteratively while there are
graph nodes which have not been scheduled:

1. Select the next graph node to be scheduled (instruction
scheduling).

2. Perform code selection for the scheduled graph node.
At this time it is possible to take into account complex
operations like MAC (multiply-add-accumulate) by pat-
tern matching. If the selected graph node can be covered
by more than one processor instruction we perform a
probabilistical choice.

3. Determine source and destination locations (register al-
location). This is done by determining the set of alleles
whose selection leads to a valid solution. This set can be
determined with knowledge of the actual set of registers
in use, actual locations (registers or memory) of argu-
ments and the set of registers which can be used by the
processor instruction. If there is need for a data trans-
port of an argument to the selected register or a need for
spilling a variable the required instructions are inserted
(and will lead to additional cycles).

Let ����� and � B � be the number of graph nodes and edges
respectively. The complexity of this step is then � ������� �
� B � � .
Fig. 8 shows an example for an individual of the given DFG
after performing the initialization step5. The encoded exe-
cution cycles are given by the relative execution order of the
genes. Thus, inserted instructions which are not encoded on
a separate gene (additional cycles) have no influence of the
allocated time steps.

5In this representation we denote M = Mem followed by � A, B, C, D � =
M as � A, B, C, D � = Mem.

B= Mem

1

2

additional

cycle

C= Mem

3

4

5

6

7

additional

cycle

Accu=B ALDLD+

A= Mem

*Accu=B A

*Accu=A C

Mem= Accu

B=Accu

A=Accu

swapped order

of input variables

ST

LD

LD

LD

Fig. 8: Example of an initialized individual

Evaluation
The fitness function of a genetic algorithm represents the ob-
jective function of the underlying optimization problem. The
individual with the highest fitness is the best solution. The
fitness function has an essential impact on the optimization
progress of the genetic algorithm because the fitness values
serve as a basis for the subsequent selection step. Hence,
GCG allows code generation according to different objec-
tives by specifying a suitable fitness function:

� Minimization of execution time can be done by count-
ing the number of execution cycles. A high number of
cycles corresponds to low fitness.

� Low-energy optimization is possible by computing the
energy consumption with respect to our instruction-
level power model for the respective individual, or sim-
ply by counting the number of memory accesses.

Furthermore low-energy optimizations can be performed for
given real-time constraints (e.g. maximum number of exe-
cution cycles of a basic block) by adding a penalty for every
constraint violation. Thus, solutions not meeting the con-
straints will be assigned a lower fitness than others.

Crossover and mutation
The crossover operator deals with generating new individu-
als by probabilistically swapping genes between two selected
individuals. In this case we perform a uniform crossover
which means that every gene has the same probability to be
exchanged. This step depends only on the number of graph
nodes (genes) and can be done in � ������� � . The result is two
individuals consisting of recombined information of the par-
ents. However, the large number of constraints (e.g. data
dependencies, or resource constraints) which have to be han-
dled can lead to invalid solutions. In order to avoid such

invalid solutions we combine the subsequent mutation oper-
ator with a correctness check.
So, the main tasks of the mutation operator are to check the
correctness of the actual allele and to generate the new gene
material by changing alleles. Performing mutation for an in-
dividual is nearly the same task as initializing an individual.
In analogy to the initialization step we determine a new allele
of a gene by choosing an allele whose selection potentially
leads to a valid solution. Thus, the complexity of the muta-
tion step is � � ����� � � B � � .

5 Experimental results
Experimental results obtained with our M3 code generator
are shown in table 2. The results refer to five real DSP
routines (complex multiplication, IIR, lattice filter, FFT and
FIR) as well as two pure test programs with large data flow
graphs (DFG1, DFG2). Columns 2 and 3 give some charac-
teristics about the number of common subexpressions in the
DFGs and their uses, respectively.

Columns 4 and 5 show the number of instructions generated
with the traditional tree based code generation technique vs.
our graph based technique, while column 6 gives the relative
improvement. As already explained in section 1, we com-
pared to the tree based technique, since it is still common in
compilers for DSPs with irregular register architectures and
there is no reference compiler for the M3-DSP.

Columns 7–9 indicate the differences in the number of mem-
ory accesses between the tree and graph based techniques.
The reduction in the number of memory accesses ranges be-
tween 18 and 58 %.

This is also reflected in the comparison of energy consump-
tion of the generated machine programs in columns 10–12.
As compared to the tree based technique, the graph based
algorithm generates code with 18–36 % lower energy con-
sumption. Note that this is not only due to the reduction of
memory accesses, but also due to the dedicated instruction
scheduling for low power.

Finally, columns 13–15 give the number of graph nodes in
the test programs, the number of generations (= 20 * num-
ber of graph nodes) simulated in the genetic algorithm, as
well as the CPU time requirements of our code generator on
a 333 MHz Ultra-10 workstation. All results are generated
by using a steady-state genetic algorithm with the following
parameters6: population size: 30; number of individuals in
the population to be replaced by the offspring: 10; mutation
rate: 1/(number of graph nodes); crossover rate: 0.6.

In the worst case, of course, the energy savings obtained may
be over-compensated by inaccuracies of the gate-level power
simulation that forms the basis of our instruction-level power
model. However, the predicted energy savings are typically
larger than the expected inaccuracy of gate level power sim-
ulation (10–25 %). Therefore, in general real energy savings
may strongly be expected. Ongoing work deals with mea-
suring the real energy consumption of the generated machine
code for an existing M3-DSP prototype chip.

6The implementation of the base genetic algorithm uses the genetic al-
gorithm library PGAPack [17].

#CSE #instructions #mem energy (� � ! �
[J]) #graph

source #CSEs uses tree graph % tree graph % tree graph % nodes #gen CPU[s]

cmult 4 8 23 15 35 10 6 40 35.06 26.63 24 12 240 3
IIR 3 7 34 24 29 16 10 38 52.65 36.39 31 19 380 8

lattice 8 16 55 34 38 24 10 58 84.03 53.81 36 22 440 13
FFT 10 26 76 48 37 36 22 39 109.75 76.57 30 32 640 29
FIR 15 30 156 128 18 78 64 18 238.01 196.29 18 80 1600 256

DFG1 14 43 127 78 39 56 28 50 181.89 116.97 36 41 820 57
DFG2 23 80 245 166 32 106 60 43 351.89 252.95 28 69 1380 192

Table 2: Comparison of tree based and graph based code generation results

6 Conclusions
This paper focuses on a relatively new topic: compilation
for low energy consumption. For our driver application, the
M3-DSP, we have first developed an instruction-level power
model that has been shown to be very accurate (within 0.5
%) as compared to an underlying gate-level power simula-
tion. Although there still may be inaccuracies w.r.t. the en-
ergy consumption of the real hardware, using such a high-
level power model is very useful in compilers due to the need
for efficient estimations. The main contribution of this paper
is a phase-coupled, genetic algorithm based code generation
technique that aims at minimizing energy consumption of the
generated machine programs. This is achieved by reducing
the number of memory accesses and a dedicated low-power
scheduling technique. Experimental results indicate that this
is a promising approach. Energy savings between 18 and
36 % as compared to a previous code generation technique
have been observed, which is very significant for our tar-
get domain, mobile embedded DSP systems. This also justi-
fies higher compilation times than in compilers for general-
purpose systems. For demonstrating the basic technique of
GCG we have focused on code generation for the special sin-
gle slice mode of the M3-DSP. Future work will deal with ex-
ploitation of all data paths, optimizing global data transfers
between basic blocks, extension of our power model to non-
zero operand values and verifying the approach by physical
measurements using an M3-DSP evaluation board.

References
[1] G. Araujo, S. Malik, and M. Lee. Using Register Transfer Paths in

Code Generation for Heterogeneous Memory-Register Architectures.
In 33rd Design Automation Conference (DAC), 1996.

[2] T. Bäck. Evolutionary Algorithms in Theory and Practice. Oxford
University Press, 1996.

[3] K. R. Baker. Introduction to Sequencing and Scheduling. Wiley, New
York, 1974.

[4] S. Bashford and R. Leupers. Constraint driven Code Selection for
Fixed-Point DSPs. In 36th Design Automation Conference (DAC),
1999.

[5] S. J. Beaty. Instruction Scheduling Using Genetic Algorithms. PhD
thesis, Department of Mechanical Engineering, Colorado State Uni-
versity, Fort Collins, Colorado, Fall 1991.

[6] G. Fettweis, M. Weiss, W. Drescher, U. Walther, F. Engel, and
S. Kobayashi. Breaking new grounds over 3000 MOPS: A broad-
band mobile multimedia modem DSP. In Proc. of ICSPAT’98, pages
1547–1551, Toronto, Canada, 1998.

[7] C. H. Gebotys. Low Energy Memory and Register Allocation Using
Network Flow. In Proc. 34th Design Automation Conference, Ana-
heim California USA. ACM, June 1997.

[8] S. Hanonoand S. Devadas. Instruction Selection, Resource Allocation,
and Scheduling in the Aviv Retargetable Code Generator. In Proceed-
ings of the 35th DAC’98, 1998.

[9] J. H. Holland. Adaption in Natural and Artificial Systems. MIT Press,
1992.

[10] Synopsys Inc. Power Products Reference Manual, 1998.
[11] Texas Instruments. TMS320C60 Instruction Set Manual, 1997.
[12] D. Kästner and M. Langenbach. Integer Linear Programming vs.

Graph-Based Methods in Code Generation. Technical Report Tech-
nical Report A/01/98., Universität des Saarlandes, 1998.

[13] M. Lee, V. Tiwari, S. Malik, and M. Fujita. Power Analysis and Low-
Power Scheduling Techniques for Embedded DSP Software. In Pro-
ceedings of the International Symposium on System Synthesis, Sept.
1995.

[14] R. Leupers. Register Allocation for Common Subexpression in DSP
Data Paths. In Asia and South Pacific Design Automation Conference,
2000.

[15] S. Liao, S. Devadas, K. Keutzer, and S. Tjiang. Instruction Selection
Using Binate Covering for Code Size Optimization. In Int. Conf. on
Computer-Aided Design (ICCAD), 1995.

[16] E. Macii, M. Pedram, and F. Somenzi. High-Level Power Modeling,
Estimation, and Optimization. In Trans. on CAD of ICs and Systems.
IEEE, November 1998.

[17] PGAPack Parallel Genetic Algorithm Library.
http://www-fp.mcs.anl.gov/CCST/research/reports pre1998/-
comp bio/stalk/pgapack.html.

[18] J. M. Rabaey and M. Pedram, editors. Low Power Design Methodolo-
gies. Kluwer, 1996.

[19] K. Roy, A. Raghunathan, and S. Dey. VLSI-Design-Tutorial: 12th In-
ternational Conference on VLSI Design: Low-Power Design Method-
ologies for Systems-on-Chips - Full Day Tutorial. January 1999.

[20] A. Sama, M. Balakrishnan, and J. F. M. Theeuwen. Speeding up Power
Estimation of Embedded Software. In Proceedings of International
Symposium on Low Power Electronics and Design, 2000.

[21] G. Sinevriotis and T. Stouraitis. Power Analysis of the ARM 7 Em-
bedded Microprocessor. In Proc. 9th Int. Workshop Power and Tim-
ing Modeling, Optimization and Simulation (PATMOS), Oct. 6-8 1999,
October 1999.

[22] C. Su, C. Tsui, and A. M. Despain. Low Power Architecture De-
sign and Compilation Techniques for High-Performance Processors.
In IEEE COMPCON, Februar 1994.

[23] V. Tiwari, S. Malik, and A. Wolfe. Compilation Techniques for Low
Energy: An Overview. In Proceedings of the 1994 IEEE Symposium
on Low Power Electronics, San Diego, October 1994.

[24] R. Wilhelm and D. Maurer. Compiler Design. Addison Wesley, 1995.
[25] T. Wilson, G. Grewal, B. Halley, and D. Banerjii. An Integrated Ap-

proach to Retargetable Code Generation. In Proceedings of the 7th
International Symposium on High-Level Synthesis, 1994.

[26] T. Zeitlhofer and B. Wess. Operation scheduling for parallel func-
tional units using genetic algorithms. In Proceedings of International
Conference on Acoustics, Speech, and Signal Processing, 1999.

