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Abstract— This paper discusses two coding approaches for a
network of half-duplex relay terminals and presents achievable
rates for the discrete memoryless relay channel. Both proposals
gain on an implicit (in case of compress-and-forward) or explicit
(in case of decode-and-forward) inter-relay cooperation.

I. I NTRODUCTION AND MOTIVATION

In [1] Cover and El Gamal proposed two fundamental cod-
ing strategies for the three-terminal relay channel:decode-and-
forward and compress-and-forward. More recently, Kramer
et al. presented in their comprehensive work [2] different
protocols for theT -terminal relay network. Both papers con-
centrated on full-duplex relay terminals which are hard to im-
plement cost-efficiently due to practical constraints. Laneman
et al. investigated this problem in [3] and proposed different
cooperative relaying protocols forhalf-duplex relay terminals.
We apply the ideas of compress-and-forward and decode-
and-forward to a network of half-duplex relay terminals to
exploit an additional inter-relay cooperation. The advantages
of this proposal are that a) it supports a continuous source-
destination transmission, b) it ensures that thecomplete source
message is retransmitted by the relay nodes, and c) it offers
an additional inter-relay cooperation. The paper is structured
as follows: Section II presents the underlying relay network
model and nomenclature. We proceed in Section III with the
description of two proposals for the half-duplex relay network
and present achievable rates. Section IV concludes the paper
with an outlook.

II. RELAY NETWORK MODEL AND NOMENCLATURE

In the following we will usex to denote vectors,X to
denote ordered sets,‖X‖ to denote the cardinality of a set
and [b; b + k] to denote a set of numbers(b, · · · , b + k) with
[b; b + k] = ∅ for k < 0. We further define the indexr over the
set[1;N ] and define addition using the modulo, i. e.,r +k :=
mod (r+k−1, N)+1. Let π(R) be the set of all permutations
of a setR andπj(r) the r-th element inπj ∈ π(R).

We consider in this paper a network ofN + 2 nodes:
the set of N relay nodest ∈ R := [1;N ], the source
node s = N + 1 and the destination noded = N + 2.
The relay channel is defined over all possible channel inputs
(x1, · · · , xN , xs) ∈ X1 × · · · XN × Xs and channel outputs
(y1, · · · , yN , yd) ∈ Y1×· · · YN ×Yd with Xi andYj denoting
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the input and output alphabets, respectively. We further use
y
R

to symbolize the vector of allyt with t ∈ R. Using this
notation the discrete memoryless relay channel is defined by
the joint pdf p

(

y
R

, yd|xs, xR

)

. To increase the readability
we will use in the following the indexr as a short-cut for the
relay nodet = πj(r) when this does not create any confusion.

III. PROTOCOLS FOR HALF-DUPLEX RELAY NETWORKS

This section presents achievable rates of two half-duplex
relay network proposals.

A. Compress-and-Forward

The first approach generalizes the compress-and-forward
protocol presented in [1, Theorem 6]. Using Wyner-Ziv coding
[4] the destination exploitsYd as side information to decode a
quantized version̂Yr of Yr. Using its own observationYd and
the quantized relay output̂Yr the destination decodesXs.

We generalize this now to a network of half-duplex relays
as follows: choose an ordered setπj ∈ π(R) and let the
relays transmit in a circular manner, i. e., in the order given
by πj . At a particular time only one relay is transmitting,
all others are receiving the source and relay signal. Hence,
each relay can observeN − 1 consecutive channel outputs
yr(b−1), · · · , yr(b−N +1) for which it selects the quantized
versionsŷr,k(ur,b−k|xr−k(sb−k)), k ∈ [1;N − 1], according
to a distortion measured(yr, ŷr) where ŷr,k(ur,b−k) denotes
the quantized version of the channel outputyr(b − k). By
the Wyner-Ziv coding approach these estimates determine
the sent relay signalsxr(sb). For the decoding of the es-
timates the destination exploitsyd(b − k), k ∈ [1;N − 1],
as well as the estimates decoded after blocks[b − 1; b −
N + 2] (offering an implicit inter-relay cooperation). Using
ŷr−k+1,N−k(ur−k+1,b−N+1|xr−N+1(sb−N+1)), k ∈ [1;N −
1], and the own observationyd(b − N + 1) the destination
decodes the source indexwb−N+1 after blockb.

An exemplary outline of this coding approach is given
in Table I (the table only shows the abbreviated version
ŷr,k(ur,b−k) for reasons of brevity). Consider the source
block xs(w4) in this table. Relay nodest = 2 and t =
3 are transmitting the index determined by the estimates
ŷ2,1(u2,4|x1(s4)) and ŷ3,2(u3,4|x1(s4)). The destination uses
yd(4) to decodêy2,1(u2,4) and decodeŝy3,2(u3,4) usingyd(4)
and ŷ2,1(u2,4). Using both estimates and the own channel
output the destination decodesxs(w4) at the end of blockb =
6. As outlined in [2] we achieve with this approach a multi-
antenna reception behavior. From the previous descriptionwe
can state the following theorem on the achievable rate.
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TABLE I

OUTLINE OF THE COMPRESS-AND-FORWARD BASED CODING SCHEME

WITH B = 5 SOURCE BLOCKS ANDπj = {1, 2, 3}.

b s t = 1 t = 2 t = 3

1 xs(w1) ∅, ∅

2 xs(w2)
ŷ2,1(u2,1),

∅

3 xs(w3)
ŷ3,1(u3,2),

ŷ3,2(u3,1)

4 xs(w4)
ŷ1,1(u1,3),

ŷ1,2(u1,2)

5 xs(w5)
ŷ2,1(u2,4),

ŷ2,2(u2,3)

6 ∅
ŷ3,1(u3,5),

ŷ3,2(u3,4)

7 ∅
∅,

ŷ1,2(u1,5)

Theorem 1: The achievable rate of the previously described
compress-and-forward approach is given by

R ≤max
πj

min
r

sup I (Xs;Yd,
{

k ∈ [1;N − 1] : Ŷ(r−k+1),(N−k)

}

|Xr−N+1

) (1)

with the side conditions (r ∈ [1;N ] , k, l ∈ [1;N − 1])
∑

k

Rr,k =Rr < min (I(Xr;Yd), I(Xr;Yr+l)) (2)

R(r+k),k >I
(

Ŷ(r+k),k;Yr+k|Xr, Yd,
{

l ∈ [2; k] : Ŷ(r+k−l+1),(k−l+1)

})

,
(3)

where (2) is due to the inter-relay and relay-destination com-
munication and (3) is implied by the Wyner-Ziv coding. The
supremum is taken over the joint pdf (withr′ ∈ [1;N ] \ {r})

p
(

xs, xr,
{

r′ ∈ [1;N ] \ {r} : ŷr′,(r′−r)

}

, yR\{πj(r)}, yd

)

=

p(xs)p(xr)p(yd, yR\{πj(r)}
|xs, xr)

∏

r′

p(ŷr′,(r′−r)|yr′ , xr),

which depends on the currentπj ∈ π (R) and transmittingr.
Proof: The proof is given in Appendix I.

If all ŷr,k are quantized with the same distortionDr it follows
thatRr,1 ≥ · · · ≥ Rr,(N−1). For two relays at almost the same
position (1) simplifies asymptotically to [1, Theorem 6].

B. Decode-and-Forward

The second approach applies the decode-and-forward strat-
egy presented in [1, Theorem 1]. Using the random binning
argument a relay node assigns a partition index to the decoded
source message and transmits this index. The source then
decodes this index and uses it to decodeXs.

We apply now the idea of decode-and-forward in a similar
way as above in the compress-and-forward case. Let relayr be
transmitting in blockb, it decodes at the end of blockb−1 (not
necessarily all) the source messagesxs(b−1), · · · , xs(b−N +
1) and transmits the partition indices withxr(sb). This offers
the chance that each relay can gain on the information sent by

the other relays to improve its own decoding. Furthermore,
we allow our protocol that ifRr,k = 0 relay r is not
decoding xs(b − k) since it might happen that one relay
relies on the support of other relays to decode the source
message. Therefore, not necessarily all relay nodes decode
all source messages but we require all relays to decode other
relay transmissions. Again the order in which the relays are
transmitting is of essential matter, therefore we will again
maximize overπ(R) and let the relays transmit in a circular
manner, i. e., relayr′ = r + k transmits in blockb′ = b + k.

Theorem 2: The achievable rate of the decode-and-forward
based approach is given by

R < max
πj

min
r

supmin(Rs,d, Rs,r) (4)

Rs,d = I(Xs;Yd|Xr−N+1) +

N−1
∑

k=1

R(r−k+1),(N−k) (5)

Rs,r = min
k∈[1;N−1]

Rr,k>0

I(Xs;Yr|Xr−k) +

k−1
∑

l=1

Rr−l,k−l (6)

with the side condition

Rr < min (I(Xr;Yd), I(Xr;Yr+k)) , (7)

for r ∈ [1;N ], k ∈ [1;N − 1] and the joint pdf

p
(

xs, xr, yR\{πj(r)}
, yd

)

=

p(xr)p(xs|xr)p
(

y
R\{πj(r)}

, yd|xs, xr

) (8)

which depends on the currently transmittingr. The supremum
in (4) is over all joint pdfp

(

xs, xr, yR\{πj(r)}
, yd

)

. Further-

more, we need to take the minimum over all relaysr ∈ [1;N ]
and the maximum over all possible ordersπj ∈ π(R).

Proof: The proof is given in Appendix II.
If we apply (4) to two relays located at almost the same
position it simplifies asymptotically to [1, Theorem 1]. Further
consider the case that allRr,k > 0, (6) simplifies toRs,r <
min
r,k

I (Xs;Yr|Xr−k), a rather tight condition.

IV. FURTHER WORK

Our further work includes the presentation of the achievable
rate of a mixed strategy where each relay node can use
the other relay quantizations to decode the source messages.
Furthermore, we will show results for a network with more
than one transmitting relay as well as results for wireless
models, e. g., Gaussian relay channel and fading channels.
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APPENDIX I
PROOF OFTHEOREM 1

Proof: We give here an outline of the proof for the
achievability of the rate given in (1). The proof is intentionally
created in the same way as [1, Theorem 6] to allow an easy
understanding of the proposed protocol: at first we describea
random coding scheme used in our proof. Then we describe
the encoding and decoding procedure to achieve the described
rate. The proof relies on the application of the Markov lemma
[5, Lemma 14.8.1] which requires strong typicality [5, Ch.
13.6]. We will use in the following the notation defined in
Section II and used in [5].

a) Random coding:
1) The source creates2nR i.i.d. n-length sequencesxs(w)

each withp(xs) =
∏n

j=1 p(xsj), w ∈
[

1, . . . , 2nR
]

.
2) Each relayr creates a codebook consisting of2nRr

i.i.d. n-length sequencesxr(sr), sr ∈
[

1; 2nRr
]

, each
with probability p(xr) =

∏n

j=1 p(xrj). Further letsr

be the vector of the indices
(

sr,1, · · · , sr,(N−1)

)

, sr,k ∈
[

1; 2nRr,k
]

, such thatRr =
∑N−1

k=1 Rr,k.
3) Create, for eachxr−k(sr) with r ∈ [1;N ], k ∈

[1;N − 1] , sr ∈
[

1; 2nRr−k
]

, 2nR̂r,k i.i.d. n-length
sequenceŝyr,k(u(k)|xr−k(sr)), each with probability
p(ŷr,k|xr−k(sr)) =

∏n

j=1 p(ŷr,kj |x(r−k)j(sr)), u(k) ∈
[

1; 2R̂r,k

]

.
4) We further introduce a random partitioning at each relay

r with N − 1 mappings such that̂yr,k(u(k)|xr−k(s))
is randomly mapped independently into2nRr,k cells
Sr,k(sk), sk ∈

[

1; 2nRr,k
]

, r ∈ [1;N ], k ∈ [1;N − 1],
according to a uniform distribution such that eachu(k)

is uniquely assigned to a binSr,k(sk).
b) Encoding: Lets assume that the relayr, trans-

mitting in block b, successfully decodedxr−k(sb−k), and
it created for each of the lastN − 1 observations
the tuple(yr(b − k), ŷr,k(ur,b−k|xr−k(sb−k)), xr−k(sb−k)) ∈

A
∗(n)
ǫ , k ∈ [1;N − 1]. If ur,b−k ∈ Sr,k(sb,k) it transmits

xr(sb) with sb =
(

sb,1, . . . , sb,(N−1)

)

, sb,k ∈
[

1; 2nRr,k
]

.
Concurrently the source sendsxs(wb). We assume that the
previous N − 1 steps were error free. Furthermore, this
presentation is done for a certainr but can be similarly done
for all r ∈ [1;N ].

c) Decoding: At the end of blockb the following de-
coding procedure is done (at the end of blockb > N − 1 the
source indexwb−N+1 is decoded):

1) The destination at first decodesxr(sb). This is done by
searching for a uniquely typicalxr(sb) with yd(b) which
is possible with arbitrarily low probability of error iff
Rr < I(Xr;Yd) andn sufficiently large (resulting from
the channel coding theorem).

2) In step 2 the destination creates the sets

Lk (yd(b − k)) := {ũr,b−k : ({l ∈ [1; k] :

ŷ(r−l+1),(k−l+1)(ũ(r−l+1),(b−k)|xr−k(sb−k))
}

, · · ·

xr−k(sb−k), yd(b − k)) ∈ A∗(n)
ǫ

}

for k ∈ [1;N − 1]. The decoding after blockb − 1
already ensured fork ∈ [2;N − 1]

(xr−k(sb−k), yd(b − k), {l ∈ [2; k] : · · ·

ŷ(r−l+1),(k−l+1)(u(r−l+1),(b−k)|xr−k(sb−k))
})

∈ A∗(n)
ǫ

(which are all known to the destination at the end of
block b − 1). Afterwards it chooses fork ∈ [1;N − 1]
the estimateŝyr (ũr,b−k|xr−k (sb−k)) such that

∃ũr,b−k : ũr,b−k ∈ Sr,k(sb,k) ∩ Lk (yd(b − k))

which succeeds fork ∈ [1;N − 1], i. e., ũr,b−k =
ur,b−k, with arbitrarily low probability of error iff

R̂r,k <I
(

Ŷr,k;Yd, {l ∈ [2; k] :

Ŷ(r−l+1),(k−l+1)

}

|Xr−k

)

+ Rr,k

(9)

andn sufficiently small.
3) Using

{

ŷr,(N−1)(ur,b−N+1|xr−N+1(sb−N+1)), . . .

ŷ(r−N+2),1(u(r−N+2),(b−N+1)|xr−N+1(sb−N+1))
}

=

{k ∈ [1;N − 1] :

ŷ(r−k+1),(N−k)(u(r−k+1),(b−N+1)|xr−N+1(sb−N+1)
}

the destination now decodesxs(wb−N+1) iff

∃w̃b−N+1 : ({k ∈ [1;N − 1] :

ŷ(r−k+1),(N−k)(u(r−k+1),(b−N+1)|xr−N+1(sb−N+1)
}

, . . .

yd(b − N + 1), xr−N+1(sb−N+1), xs(w̃b−N+1)) ∈ A∗(n)
ǫ .

We can state that̃wb−N+1 = wb−N+1 with arbitrarily
low probability of error iff

R <I (Xs;Yd, {k ∈ [1;N − 1] :

Ŷ(r−k+1),(N−k)

}

|Xr−N+1

) (10)

andn sufficiently large.
4) Furthermore, all other relays decode the relay message

xr(sb) iff

Rr < I(Xr;Yr+k), k ∈ [1;N − 1] (11)

andn sufficiently large. They further create the follow-
ing tuple fork ∈ [1;N − 1]
(

yr+k(b), ŷ(r+k),k

(

u(r+k),b|xr(sb)
)

, xr(sb)
)

∈ A∗(n)
ǫ

which is possible iff

R̂(r+k),k > I(Ŷr+k,k, Yr+k|Xr). (12)

The previous points show thatB+N −1 blocks are necessary
to communicateB blocks, i. e., a rate loss(N−1)/B · R
is implied which goes to0 as B → ∞. We can further
reformulate (9) without loss of generality to

R̂(r+k),k < I
(

Ŷ(r+k),k;Yd, {l ∈ [2; k] :

Ŷ(r+k−l+1),(k−l+1)

}

|Xr

)

+ R(r+k),k
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which implies using (12) that

I
(

Ŷr+k,k, Yr+k|Xr

)

< I
(

Ŷ(r+k),k;Yd, {l ∈ [2; k] :

Ŷ(r+k−l+1),(k−l+1)

}

|Xr

)

+ R(r+k),k,

and

R(r+k),k >I
(

Ŷ(r+k),k;Yr+k|Xr, Yd, {l ∈ [2; k] :

Ŷ(r+k−l+1),(k−l+1)

}) (13)

which is a result of the employed Wyner-Ziv coding.
Remark 1: The Markov lemma is necessary to show that

the probability for
(

xs(wb), xr(sb),
{

r′ ∈ R \ {r} : ŷr′,(r′−r) (ub|xr(sb))
}

, · · ·

y
R\{r}

(b), yd(b)
)

/∈ A∗(n)
ǫ

is arbitrarily small ifn is sufficiently large.

APPENDIX II
PROOF OFTHEOREM 2

Proof: We give here an outline of the proof for achiev-
ability of (4) by providing a random coding scheme achieving
this rate. For this proof we require weak typicality as defined
in [5, Ch. 14.2].

a) Random coding:

1) Define 2nR conditionally i.i.d. n-length sequences
xs(w|xr(s)) each with probability p(xs|xr(s)) =
∏n

j=1 p(xsj |xr(s)), w ∈
[

1; 2nR
]

, r ∈ [1;N ], s ∈
[

1; 2nRr
]

. The dependence between source and relay
message is used so that the source can assist the relay
transmission, e.g., by coherent transmission.

2) Each relay creates a codebook consisting of2nRr

i.i.d. n-length sequencesxr(sr), sr ∈
[

1; 2nRr
]

, each
with probability p(xr) =

∏n

j=1 p(xrj). Further letsr

be the vector of indices
(

sr,1, · · · , sr,(N−1)

)

, sr,k ∈
[

1; 2nRr,k
]

andRr =
∑N1

k=1 Rr,k.
3) Finally we introduce a random partitioning such that

eachxs(w|xr(s)) is randomly mapped into2nRr,k cells
Sr,k(sk), sk ∈

[

1; 2nRr,k
]

, r ∈ [1;N ], k ∈ [1;N − 1].
We again use different rates to communicate each source
symbol. Furthermore, we introduce the possibility that
Rr,k = 0, i. e., the relayr transmitting in blockb does
not decode the source symbolxs(wb−k|xr(sb−k)).

b) Encoding: Consider blockb in which relay r is
transmitting. Assumewb−k ∈ Sr,k(sb,k) and relayr decoded
all those wb−k for which Rr,k > 0 correctly, it transmits
xr(sb) with sb =

(

sb,1, . . . , sb,(N−1)

)

and the source transmits
xs(wb|xr(sb)), k ∈ [1;N − 1] in block b. This is possible
since the source node knows the mappingsSr,k and therefore
can determine by itself the message sent by the relay. Again,
we assume that the previousN − 1 steps were error free.

c) Decoding: At the end of blockb the following de-
coding procedure is done (at the end of blockb > N − 1 the
source indexwb−N+1 is decoded):

1) The destination decodesxr(sb) sent by relayr in block
b. This is done by searching for a uniquely typicalxr(sb)
with yd(b) which is possible iffRr < I(Xr;Yd) andn
sufficiently large.

2) In the next step the destination creates a set of those
w̃b−N+1 which can be the correct source index:

L (yd(b − N + 1)) = {w̃b−N+1 :

(xs(w̃b−N+1|xr−N+1(sb−N+1)), · · ·

xr−N+1(sb−N+1), yd(b − N + 1)) ∈ A∗(n)
ǫ

}

.

Since the destination knows the bin indices it follows

∃w̃b−N+1 : w̃b−N+1 = L (yd(b − N + 1))∩
N−1
⋂

k=1

S(r−k+1),(N−k)(s(b−k+1),(N−k))

andw̃b−N+1 = wb−N+1 with arbitrarily low probability
of error iff

R < I(Xs;Yd|Xr−N+1) +

N−1
∑

k=1

R(r−k+1),(N−k) (14)

andn sufficiently large.
3) Let r′ = r+1 be the next relay sending in blockb′ = b+

1. At first r′ needs to decode the vectorsxr′−k(s(b′−k)),
k ∈ [1;N − 1], which is possible with arbitrarily low
probability of error iff Rr′−k < I (Xr′−k;Yr′) and n
sufficiently large. Relayr′ further creates the sets

Lk (yr′(b′ − k)) = {w̃b′−k :

(xs(w̃b′−k|xr′−k(sb′−k)), · · ·

yr′(b′ − k), xr′−k(sb′−k)) ∈ A∗(n)
ǫ

}

,

for k ∈ [1;N − 1]. Using these sets and the previously
decoded indices the relay now decodes iff

∃w̃b′−k : w̃b′−k =Lk (yr′(b′ − k))∩
k−1
⋂

l=1

S(r′−l),(k−l)(s(b′−l),(k−l))

which succeeds (for allk such thatRr′,k > 0) such that
w̃b′−k = wb′−k iff

R < I(Xs;Yr′ |Xr′−k) +
k−1
∑

l=1

Rr′−l,k−l (15)

andn sufficiently large.
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