
A Network-on-Chip Channel Allocator for
Run-Time Task Scheduling in Multi-Processor

System-on-Chips
Markus Winter and Gerhard P. Fettweis

Technische Universität Dresden, Vodafone Chair for Mobile Communications Systems
Email: winter@ifn.et.tu-dresden.de

Abstract—Multi-Processor System-on-Chips (MPSoC) with
Network-on-Chip based interconnection systems have emerged as
the promising solution to computation intensive signal processing
applications. But the mapping of applications onto the MPSoC
and the allocation of computation and communication resources
for applications, jobs and tasks is still a challenge. In this paper
we describe the concept of a global communication resource
allocator working on task level. The allocator reserves virtual
channels at run-time across the NoC between two submodules in
the MPSoC providing deterministic latency and bandwidth. The
allocators global knowledge allows for channel allocation even in
highly utilized NoCs with already many allocated channels. Area
consumption and reservation delay of the channel allocator are
considered.

Index Terms—Multi-Processor System-on-Chip, Network-on-
Chip, virtual channel, guaranteed traffic, NoC management,
channel allocation.

I. INTRODUCTION

Emerging next generation cellular standards like 3GPP
LTE or WiMAX as well as multimedia applications like
MPEG or H.264 require a vast amount of signal processing.
Multi-Processor System-on-Chips (MPSoC) have emerged as
a powerful solution to these demands. MPSoCs contain several
units or modules like control processors, processing elements
(DSPs, ASIPs, hardware accelerators), on-chip memories or
peripheral controllers and the interconnection system as the
glue between the units realized as bus, clustered buses,
crossbar-switch or packet-switched Network-on-Chip (NoC)
with distributed routers.

Besides power and performance efficient design of compu-
tation units (hardware accelerators or signal processors) the
interconnection of the particular units in such an MPSoC,
mostly realized as NoC, faces designers and programmers
with new challenges. Growing MPSoC complexity makes
communication subsystem design as important as computation
subsystem design [1]. The MPSoC must not only provide
enough computational power. Furthermore, signal processing
often has to meet stringent deadlines. Ack/NAck protocols
in wireless communication systems are a well known exam-
ple of real-time signal processing. This requires predictable
assertions about throughput and latency of data transfers
between computational units and memories in MPSoCs at
100% of all data transfers. As stated in [2] satisfaction of
the required services (latency, bandwidth) at 99.9% of all

transmitted packets is not sufficient. Real-time systems rely on
fulfillment of assertions in 100% of all cases. Purely oversizing
the NoC is therefore not an acceptable way because there
will be a small percentage of packets which will not meet
the deadline. Guaranteed traffic (GT) channels in opposite
establish a dedicated connection with deterministic latency and
throughput between two units. They provide the feature of
guaranteed throughput and latency in any case in a NoC [3],
[4].

The efficient mapping of applications onto the parallel ar-
chitecture and assignment of computation and communication
resources to an application is still a challenge. Normally,
applications or jobs are divided into smaller tasks. A task
is an atomic computational kernel consuming and producing
chunks of data. Tasks on the one hand and the control
code on the other hand constitute complete applications, e.g.
multimedia decoding or phone call processing in baseband.
Tasks are mapped onto dedicated processing elements (PEs)
in the MPSoC and executed on them. For data exchange with
predecessor and successor tasks the PEs transmit the according
data along established channels in the on-chip network. The
interconnection of these PEs and especially the set up of virtual
channels between them will be the focus of this paper. Some
approaches were taken into this direction.

First, it was tried to solve the problem offline. The compiler
schedules tasks of an application to PEs and takes the delays
due to communication and even real-time-constraints into
account ([5], [6]). But the data dependent control flow of
some applications like H.264 and the possibility of several
applications running in parallel on an MPSoC does not allow
for efficient task mapping and channel allocation at compile.
Otherwise two tasks from different applications could claim
the same PE while other PEs would be available. Run-time
algorithms in opposite decide about task scheduling and com-
munication channel establishment depending on the current
situation in the MPSoC and can exploit the MPSoC inherent
parallelism much better.

In [7] every PE can set up a virtual channel individually
from the other units in the MPSoC at run-time. As soon as a
PE needs a guaranteed traffic connection to another PE it sends
a lock packet to the target setting up the channel between them.
If a link between two routers along the route is already locked
by another channel, channel build up will fail and will be



retried later. The distributed channel allocation lacks of global
information about network utilization in terms of already
allocated channels. Thus, a channel allocation can fail although
there exist free routes between the two communicating nodes.

In [8] processing tasks belonging to a job are mapped onto
PEs and the necessary resources in terms of communication
channels between these tasks are allocated at run-time by a
global entity. This is done on a per-job base. Every time a
new job is started, resource allocation is done once and then
kept until the end of the job requiring a constant commu-
nication and computation pattern between the corresponding
tasks which are arranged in a pipelined fashion connected
by FIFO channels. A similar approach of coarse-grained run-
time scheduling is taken in [9]. A global authority distributes
computational load at application start and allocates virtual
channel which are stationary during application execution.

Job-or application based run-time scheduling and resource
allocation is performed in time steps of several 100 ms

to even seconds. But the quasi-stationary mapping of tasks
of a job or application onto processing elements does not
necessarily utilize the PEs at 100% often because they wait
for data what leaves room for other tasks to process on that
PE. Additionally, the application’s control code can be data
dependent (e.g. H.264) requiring flexibility in the order of
tasks and the resulting communication between the PEs and
memories. We follow a task-based approach instead of a job-
based one allowing for much more flexibility in resource
assignment to current application’s needs. [10] introduces the
platform concept for run-time task scheduling onto MPSoCs.
In this paper we want to enhance this concept by a packet-
switched Network-on-Chip and a channel allocator (we call
NoCManager) providing guaranteed and predictable latency
and bandwidth for data transfers between PEs and memory
needed by real-time tasks.

The paper is organized as follows. In section II we give
a brief overview of the MPSoC platform concept allowing
for efficient run-time and real-time task scheduling. The NoC
architecture is explained in section III. In section IV we will
describe principles of setting up virtual channels necessary for
real-time tasks in NoC based MPSoCs. The NoCManager itself
will be explained in section V. Section VI gives some results
of the channel allocator and, finally, section VII concludes the
paper.

II. MPSOC PLATFORM

The possibility of several applications running in parallel
on the MPSoC calls for run-time instead of compile-time task
scheduling onto the processing elements. Our platform concept
along with our programming model aims at assigning tasks of
an application onto the different PEs in an MPSoC at run-
time [10]. A task in the sense of our programming model
typically takes some hundreds to few thousand clock cycles
for computation.

The core of our MPSoC platform consists of a RISC
host processor (HP), the CoreManager and slave processing
elements, Fig. 1. The interconnection can be a traditional bus,

MPSoC

DSP, ASIP, ACC

InstMem

DataMem

DSP, ASIP, ACC

InstMem

DataMem

DSP, ASIP, ACC

InstMem

DataMem

Host 
Processor

Core
Manager

Task 
Queue

Global Memory (SDRAM)
Interconnection network

DMA

Interconnection network

Task load with 
program and data

Data write back

Task firing

Data write back

Task firing

Task load with 
program and data

Task load with 
program and data

Data write back

Task firing

Task load with 
program and data

Data write back

Task firing

in-
struct-
ions

Fig. 1. Block Diagram of the MPSoC platform. The dotted lines indicate the
control flow for run-time task scheduling onto the slave processing elements
(DSP, ASIP, ACC).

a crossbar switch or a NoC. The dotted lines in Fig. 1 illustrate
the control flow between memory, HP, CoreManager and PEs.
On the HP the operating system and the control code of one
or more applications is executed. Within the operating system
tasks are instantiated sequentially as part of an application.
This instantiation is translated into a task description which
fills a queue in the CoreManager. The CoreManager is a
dedicated unit (either in hardware or in software) which
schedules tasks according to the task descriptions onto the
available processing elements at run-time ([11]).

Task distribution can be done out of order as far as tasks
are independent from each other. The CoreManager is aware
of the global memory regions for source and result data
needed and produced by tasks. With this knowledge tasks are
scheduled concurrently while data dependencies are consid-
ered and resolved. All of this is done transparently for the
user and simplifies multi-processor programming significantly.
The concept of out of order execution is well known and
established at instruction level parallelism. We apply the same
principles at task level. It is our conviction that exploiting
dynamic scheduling at higher levels of granularity is an
additional powerful approach.

The slave processing elements can be ASICs as hardware
accelerators, DSPs or ASIPs. They all have a local memory
making them completely independent from the global memory.
As soon as a task is scheduled onto a PE, the input data and,
in case of DSP or ASIP, the task program is transferred from
global to local memory of the PE via DMA transfers initiated
by the CoreManager. After task execution the result data is
transferred back to global memory. The data transfer is done
without any constraints or real-time capabilities. Therefore, no
guarantees can be provided for task scheduling and application
execution.

[12] extends the CoreManager to real-time capabilities.
Tasks must be finished until a deadline and the MPSoC must



provide enough free processing power before new tasks and
applications can be started. The data transfer must neither be
the bottleneck nor the indeterminable variable in the real-time
considerations of the whole MPSoC but have to satisfy specific
bandwidth and latency requirements. Thus, we enhance the
interconnection system to packet-switched NoCs in order to
provide the communication resources and the determinism
and predictability for data transfers via Guaranteed Traffic
channels. The CoreManager concept is extended by a method-
ology which allocates and frees the GT channels between the
PEs and memories for real-time MPSoCs. This methodology
is a channel allocation unit we call NoCManager which is
described in section IV and V.

III. NETWORK-ON-CHIP ARCHITECTURE

The current interconnection system bases on classical buses
or on crossbar like circuit-switched ([13]) interconnection
systems. But the advances in MPSoC design do not allow
any longer for a ’one-entity’ communication system. Signal
propagation delay and area considerations call for distributed
packet-switched interconnection systems provided by NoCs.
Consequently, we introduce a NoC into the MPSoC platform.

The routers connected with the modules and each other
establish the communication links between the modules (PEs,
host processors, memories, peripherals,...) in the MPSoC. They
receive flits (flow control digits) and forward them into the
direction of the target module. A flit is a one-cycle packet
consisting of a header containing the target module address
and a payload containing the address within the module and
data. There exist two kinds of flits: Best Effort (BE) and
Guaranteed Traffic (GT) which form the different traffic types.
BE flits will be forwarded in a router if the output of a router
in destination direction is free. The destination direction is
determined by the routing mechanism and bases on the target
address in the flit header. Different routing algorithms are
available (deterministic or adaptive) and can be used in a
specific NoC realization. Round robin arbitration between all
input ports is used in case two BE packets want to get access
to the same output port in the same clock cycle. If a BE flit
cannot be forwarded in a specific clock cycle it remains in a
small FIFO which exists in every input port.

GT on the other hand bases on the reservation of a virtual
channel between two communicating modules. In the routers
along the channel the corresponding input and output ports are
reserved for GT flits of this channel. A GT reserved output
port knows whether and from which input port the GT flit has
to be forwarded. As soon as a GT flit arrives at that input port
the output port forwards it. As an example look at Fig. 2 where
a combined BE-GT router can be found. In this example the
router has 4 ports (north, east, south and west). Every port
is bidirectional consisting of an input and an output part and
in every port there is the differentiation between BE and GT
flits. This router is part of a reserved GT channel. The GT
crosses the router from south to west and vice versa. Note,
that a GT channel is always bidirectional in the sense of our
NoC. In the west output port the GT reserve register is set

GT flit

GT reserve: 
SOUTH

BE flit

Output port

West

Header Bit:
GT

BE flit

Input port

Output port

Input port

Output port

Output port

Input port

Input port

GT flit

GT reserve: 
NULL

BE flit

East

Header Bit:
BE

BE flit

G
T 

flit

G
T 

re
se

rv
e:

 
W

ES
T

BE
 fl

it

South

He
ad

er
 B

it:
G

T

BE
 fl

it

G
T flit

G
T reserve: 

NULL

BE flit

North

Header Bit:
BE

BE flit

GT flit GT flit
G

T flit

BE routing

G
T 

flit

Fig. 2. Block diagram of an example combined BE-GT router with 4
bidirectional ports. As an example a GT channel between port west and south
is established and the GT flits between both ports are directly forwarded. The
FIFOs for BE traffic in the input ports are not shown because of clearness.

to SOUTH. Thus, as soon as a GT flit arrives at input port
south it is forwarded directly to output port west and put out
of the router. The BE routing is bypassed in that case and
forwarding of BE flits in direction west from any other input
port is stalled. Due to the fact that every router in the NoC
works the same way, a GT route is constituted between two
modules.

As can be seen from Fig. 2 GT routing is done implicitly
according to the reserved input-output pair (here the SOUTH-
WEST/WEST-SOUTH pair) and the GT reserve register.
Therefore, the routing algorithms only apply to BE traffic.
The target address in the flit header is not considered at GT
flits. The GT reservation is done by the NoCManager which
sets the GT reserve registers in the routers’ ports explicitly.
A GT route is cleared via a GT tear down flit which is send
along the route. This packet can be initiated by any of the two
modules communicating via this GT route. Only one channel
can be reserved at one port and across one link reducing router
size and simplifying router complexity and global synchrony
in case of different clock domains.

Basically, GT flits are the same as BE flits except for 1
bit which identifies them as GT (and except for ignoring the
target module address in the flit header). The determinism of
GT is the only opposite between GT and BE traffic. Due to
reservation a GT flit will always be forwarded as soon as it
arrives at a router independent of possible congestions which
only affect BE traffic. If at a port a channel is reserved but in
a cycle no GT flit has arrived, the free port will be used for
BE flits.



MPSoC

Host Processor

Core
Manager

Task 
Queue

DMA I

Global 
Memory III 
(SDRAM)

Router D

Global 
Memory II 
(SDRAM)

Global 
Memory I 
(SDRAM)

Router B

 Router A

Router C

Peripherals

Other units

 DSP/ASIP I

 DSP/ASIP II

 DSP/ASIP III

 DSP/ASIP IV

NoC 
Manager

DMA II

Fig. 3. Block Diagram of the modified example MPSoC platform with NoC
and NoCManager.

The topology of the NoC can be an arbitrary one. In
the routers only the number of ports and the BE routing
algorithm have to be adapted to the intended topology. But
it has no effect on the GT routes and GT flit forwarding.
The NoCManager can be used for any kind of topology as
well - regular and irregular. One router per module results in
high area overhead due to NoC. Therefore, for more specific
MPSoCs where communication patterns between submodules
can be appraised, it might be often useful to apply more
specific NoCs. E.g. communication between control processor
and slave PEs in our MPSoC platform will not be high because
all data transfers to or from the PEs are done via DMA and
they only communicate with the CoreManager. Additionally,
some I/O systems like VGA or streaming interfaces to digital-
analog-converters do not need a high bandwidth link to host
processor or slave PEs but high bandwidth access to global
memories. In such cases it can be useful to delete a link
reducing routers’ size or to attach several modules of less
bandwidth to the same router. In Fig. 3 a possible example
of a specific NoC topology suitable for our modified MPSoC
platform can be found. Note, Fig. 3 does not imply that this is
the best area-performance trade-off for our MPSoC platform.
Moreover, a realistic NoC based implementation will have at
least 8 or 16 DSP/ASIP elements instead of only 4. Figure 3
is just an example to illustrate the principle of our MPSoC
platform realized with an irregular NoC topology.

However, for the purpose of this paper we will restrict to
mesh based NoC topology, where every submodule has a direct
connection to exactly one router. They are often adopted in
literature and research because of their very regular structure,
simple routing mechanisms, easy adoption and the equality
of all routers in the MPSoC. Mesh based NoCs also offer
alternative links for a communication channel between two
modules providing high combined bandwidth and reducing
risk of congestion at bottlenecks. But, once more, neither the
NoC design and generation flow nor the GT channel feature

XML
description

C++
data base

read XML

genSimgenHDL

C++/SystemC
simulation model

synthesizeable 
VerilogHDL model

template 
library

NoCManager 
+

 MPSoC top level module 
and router connection

Fig. 4. NoC and MPSoC top level generation flow.

and the NoCManager are restricted to this mesh topology.
In order to test and realize different topologies, sizes and

types of NoCs we use an automated generation flow for the
interconnection in the MPSoC. The network is described in an
XML format. Modules and routers in the MPSoC and links
between them are defined in the XML file and read by a
C++ framework. It can be defined arbitrarily which module or
router is connected to which other module or router allowing
any architecture or topology. The framework in turn generates
the HDL description and a C++/SystemC simulation model
of the MPSoC where routers and submodules are included as
already existing entities. While the modules are provided by
third parties or developed newly the routers are provided as
templates in a library. Their data width, address width, FIFO
size and some other factors can be parameterized resulting
in highly automated design of MPSoC and reuse of available
routing components. During the generation process they are
included and instantiated as parameterized components in the
MPSoC. The interconnection and MPSoC top level generation
flow can be found in Fig. 4, too.

IV. GT CHANNEL ALLOCATION VIA NOCMANAGER

The assignment of computation resources to an application
and its tasks is done via the CoreManager explained in
section II. But as communication becomes as important as
computation, guarantees concerning bandwidth and latency
and the assignment of Guaranteed Traffic channels to the
communicating modules are necessary, too. The NoC which
will be used for our MPSoC provides GT services. Finding
the virtual GT channels between two modules and allocating
them is the job of the NoCManager (NoCM). The NoCM has
knowledge about all links in the MPSoC (and the according
routers) and whether they are already allocated or not.

As soon as a module needs a GT channel to another module
it requests channel reservation at the NoCM. This, in turn,
solves a shortest path problem in the graph formed by the
NoC. Then, the resulting channel is allocated by informing the
according routers reserving the ports and the module which
requested the GT channel is informed about establishment
of the channel. Especially for the MPSoC platform concept



described in section II the NoCM is a natural enhancement,
Fig. 3 which can be included as the next step after task
scheduling as part of the DMA transfers of program and data
from global memory to the slave PEs. The CoreManager sends
information about data transfers to the NoCM. The NoCM, in
turn, reserves a channel and then instructs the DMA or the PEs
itself to do data transfer via GT even without the necessity of
a destination address in the header due to GT implicit routing.
When the transfer is completed, DMA (or the slave PEs) free
the GT channel via a tear down flit along the route. The NoCM
is then informed by the routers along the GT route about tear-
down of the route and deallocation of the according ports.
They are now available for other channels again.

When the NoCM has found a free channel through the NoC,
informing the routers and locking the appropriate ports can
be done in two ways. Either the NoCM sends a lock packet
along the route via source routing or the ports in the different
routers are allocated via direct connections between NoCM
and all routers. In the first case the NoC itself is used for route
locking. No additional and special connections are necessary.
But travel of lock packet through the NoC will take some time
and delays the data transfer additionally. Next, before the lock
packet can allocate the routers’ ports it has to get to the start
point of the route what is an additional way to travel.

Direct connections on the other hand can allocate the route
in just one or two clock cycles speeding up channel allocation
significantly. Due to the automatic generation of the NoC (the
interconnection between routers and modules) and also the
NoCM (as will be seen later) out of the XML description,
addition of special connections between NoCM and routers is
automated, too, and completely transparent for the MPSoC
designers. We decided to use direct connections between
channel allocator and routers which can be found in Fig. 3
as dotted lines because of the advantages in allocation delay
and the possibility for automated inclusion.

It is important to point out a virtual channel in the sense of
this paper is a bidirectional connection. The requesting module
must be able to send request packets for different addresses to
the requested module e.g. in case of random read accesses with
deterministic latency and the requested module must be able
to answer with deterministic latency and bandwidth. We know
about the problem of wasting bandwidth due to the probably
not fully loaded virtual channel in both directions. Extensions
to several virtual channels along the same link with the help
of slot reservation tables like in [3] are imaginable as well.
The NoCM would be able to handle this as will be described
in more detail in the next section.

V. ARCHITECTURE OF NOCMANAGER

From the last section we see the NoCM has to solve the
shortest graph problem in a graph description of the MPSoC
NoC in order to find a virtual channel (path) through the NoC.
Solving graph problems in hardware is an area of research on
its own and often hard to realize in acceptable time. However,
the graph is known at design time due to the fix structure of the

NoC and therefore a hardware graph solution with acceptable
area and time resources can be realized.

First, the NoC must be mapped onto a graph representation
consisting of nodes and edges. The modules and the routers
are represented by nodes. Links are the edges between the
nodes. If a (bidirectional) link exists between two routers, two
modules or a router and a module, the corresponding nodes
will be connected. In Fig. 5 mapping of an example NoC onto
a graph representation can be found. The mapping process
results in a graph where all edges are bidirectional and have
the same weight allowing to disregard it. The weight indicates
how many cycles a flit needs for one hop from one router
entrance to the entrance of the next router or module. So far,
we assume the clock cycles a flit needs for such a hop to be
the same for all hops in the NoC.

For hardware realization of the graph representation we base
on the work of Huelsbergen et al. in [14] and [15]. Nodes are
represented by simple, unconnected, horizontal and vertical
wires. If an edge between two nodes exists, the horizontal
node-wires will be connected with the vertical node-wires
via AND-OR-gates. The transformation of the NoC graph
representation to the hardware realization as HArdware Graph
ARray (HAGAR) or graph matrix can be found in Fig. 5. For
example let us consider node (0). It has connections to nodes
(1), (2) and (3). The horizontal wire for node (0) has AND-OR-
connections to the vertical wires of nodes (1), (2) and (3) in
the HAGAR realizing the unidirectional edges from node (0)
to nodes (1), (2) and (3). The horizontal wires of nodes (1), (2)
and (3) have AND-OR-connections to the vertical wire of node
(0) realizing the edges from nodes (1), (2) and (3) to node (0).
These 2-fold connections result in a hardware representation
of the bidirectional edges (links). Unidirectional edges (links
in the NoC) would be possible either but are not useful in the
sense of our virtual channel allocation.

If we want to know whether a node can be reached from
another node, the starting node will set a logic value of ’1’ on
the according horizontal wire. This logic value spreads across
the wire to the AND-OR-gates and activates the reachable
nodes (vertical wires). These reached nodes are set to logic ’1’
on the horizontal wires and, in turn, activate the next nodes on
the vertical wires via the connected AND-OR-gates and so on
until the last reachable node. As an example, let us consider
the way from module (3) to module (5). First, we activate the
initial node (3) in the HAGAR by setting a logic ’1’ on the
horizontal wire of node (3). For the moment, let us assume
the AND-OR-gates were simple OR-gates. In that case, the
logic ’1’ on the wire of node (3) will spread across the OR-
gates along the vertical node (0) wire. That means node (0)
is activated and detected. Now node (0) is activated on the
horizontal wire via a logic ’1’ (additionally to node (3)). This
’1’ spreads across the OR-gates on the vertical wires of node
(1), (2) and (3). Next, the horizontal wires of nodes (1) and
(2) are activated additionally via logic ’1’ (node (3) is already
activated because it was the initial node and node (0) stays
active from the previous step). The activation of node (1) on
horizontal wire leads to activation of node (0), (2) and (4) on



router 
(0)

module 
(3)

router 
(2)

module 
(5)

router 
(1)

module 
(4)

Detection of Activated Column (Node) 
Node 

(0)
Node 

(1)
Node 

(2)
Node 

(3)

Node (0)

Node (1)

Node (2)

Node (3)

&
0 0

0

AND

OR

C

R

A

B

Q

Q

Edge active 
FlipFlop

AND-
OR =

Node (4)

Node (5)

Node 
(4)

Node 
(5)

AND
-OR

AND
-OR

AND
-OR

AND
-OR

AND
-OR

AND
-OR

AND
-OR

AND
-OR

AND
-OR

clock

0

1

2

3

4

5

NoC Graph Representation

Hardware Graph Array (HAGAR)

Activate/Deactivate Edge

Ac
tiv

at
e 

In
itia

l N
od

e

AND
-OR

AND
-OR

AND
-OR

Clock
Asynchonous Reset

Fig. 5. Transformation of an example NoC topology (upper left side) to its
graph representation (upper right side) and then to the hardware realization
as graph matrix (HAGAR) (in the middle). On the lower side the detailed
circuit of the AND-OR-gate used in the graph matrix is illustrated including
the edge activation Flip-Flop.

the vertical wires. The activation of node (2) on horizontal
wire leads to activation of node (0), (1) and (5) on the vertical
wires. Now we have arrived at node (5) and the algorithm
stops. But up to now we do not have the route from module
(3) to module (5). We only solved a reachability problem and
know, that module (5) can be reached from module (3).

If we want to go one step further and find the shortest
path in the NoC we have to consider the weight of the
edges and the sum of weights along the route, too. While the
simple reachability problem can be solved without clocking,
for shortest path solution we need a clock. Look again at Fig.
5. In the first cycle we activate the starting node, the module

where the virtual channel shall start. Via the AND-OR-gates
(they can still be seen as simple OR-gates) all nodes reachable
in one hop are activated and detected on the vertical wires.
In opposite to solution of reachability problem, for shortest
path the reached nodes have to remember the node which
activated them for the first time. In the next cycle all nodes
which were activated on the vertical wires are set to logic
’1’ on their horizontal wires. They activate other nodes on
the vertical wires again. This goes on until the intended end
node is reached. In our example from above, in the first clock
cycle node (0) remembers that it was activated by node (3).
In the second clock cycle node (1) and (2) remember that
they were activated by node (0). In the third clock cycle node
(5) remembers that it was activated by node (2) and node (4)
remembers that it was activated by node (1). The intended end
node (5) was reached and the algorithm is stopped. (No new
horizontal wires will be activated.)

It can happen that a node is activated by more than one node
in the same cycle or it is driven high again although it already
has been activated. In such cases the node only remembers
one and the first of the predecessor nodes. From the example
it can be seen that in step 3 the horizontal wires of nodes (1)
and (2) are activated in the same clock cycle in parallel. This
is the general behavior of the NoCM. All nodes which were
reached in a cycle are activated in the next cycle parallelizing
search of a route in different directions. If two or more search
directions arrive at a node in the same cycle only one of the
possible predecessors is chosen. All arriving routes at this node
have the same length. So, it is not of importance which one is
chosen. If a search direction arrives at a node which is already
activated (logic ’1’) only the predecessor which activated the
node first will be stored. The search direction which arrives
later at this node dies out.

If in a cycle no new nodes (vertical wires) are activated
without having reached the intended end node the end node
will not be reachable. In the NoC this means, there is currently
no free path for a GT channel between the two modules which
want to communicate via GT. In such a case finding a GT
channel can be retried later or a fail message can be send to
the GT channel requester.

As soon as the end node is reached the path is backtracked.
Starting from the end node backtracking bases on the stored
predecessor nodes. In our example, node (5) is the end node
and has node (2) stored as predecessor node. In the next cycle,
the predecessor of node (2) (node (0)) is extracted and in the
last cycle the predecessor of node (0) is found as node (3)
which is also the starting node. Backtracking comes to an end
and has found the path of the GT channel from module (3) to
module (5) and vice versa.

During backtracking in every cycle a new router along the
route is extracted and this router is informed immediately
about the GT channel crossing it. Path backtracking and
channel allocation are parallelized by that. The router receives
two IDs of its neighbor routers along the GT route. The router
associates the router IDs received from the NoCM with the
two corresponding ports and sets the GT reserve register in



the output ports appropriately. (Compare also to Fig. 2 where
the corresponding ports are south and west.)

Up to now the AND-OR-gates could be seen as simple OR-
gates. But the edges (links) which are found at backtracking
have to be deactivated in the graph matrix. Otherwise a link
could be used for another GT channel although it is already
in use and we do not allow more than one GT route crossing
a link. Deactivation of the edges is done in the AND-OR-
gates. A 1-bit flipflop per edge is used for activation or
deactivation of this edge. The activation bit is AND-gated
with the horizontal wire of a node, Fig. 5. Thus, if an edge
is deactivated the logic ’1’ on the horizontal wires will not
cross the AND-OR-gates and the existing but already allocated
link is not detected at next path search. This ensures already
allocated links not to be allocated again. When a GT virtual
channel is teared-down by an unlock packet send along the
channel route, the ports and links of the corresponding routers
are freed. The router sends this information to the NoCM
which reactivates the edges in the graph matrix by setting the
1-bit activation flipflop to logic ’1’. Now the AND-OR-gate
can be crossed again, the link will be detected and used.

In every cycle one hop of the channel path through the
NoC is found. Thus, signal propagation through graph matrix
from the starting node to the end node will take as many
clock cycles as the shortest path has hops. Path backtracking
takes as many cycles, too, because in every clock cycle one
predecessor node is extracted in order to achieve high clock
frequencies.

The hardware solution of the shortest graph problem con-
sisting of path search/graph matrix, path backtracking and edge
activation is the heart of the NoCManager. A queue for the
incoming GT channel requests and a submodule for informing
the modules in the MPSoC about reservation of the GT route
complete the NoCM as can be seen in Fig. 6.

Because of the NoCM’s global knowledge about the NoC
graph and the current allocation of links it can find free GT
routes where simple distributed principles like in [7] will
fail. It also has knowledge about the length of the routes
by a simple counter. This knowledge can be send to the GT
requester providing an explicit number of hops between the
communicating modules and allowing for exact computation
of communication latency which could be taken into account
by the modules.

It is important to point out the NoCM is not limited to mesh-
based NoCs. The connections between modules and routers
can be arbitrary allowing for adaption to other topologies
or completely individual and irregular NoCs. The simple
mapping from NoCs to graph hardware realization allows for
efficient automated generation even in the case of completely
irregular NoC topologies. The XML-file used for NoC descrip-
tion in our MPSoC platform is very suitable for this. Modules
and routers are the nodes and realized as the column detect
register and according wires in hardware (look at Fig. 5), the
links between modules and routers are the edges and realized
as AND-OR-gates with an activation-flipflop. So, the NoCM
is simply generated along with the top level interconnection

NoCManagerGraph Problem

Path Search/
Graph Matrix

Edge 
Activation Deactivation

 Links and ports in routers 
deallocated: activate edges

Reserve links and ports in routers

Path 
Backtracking

Path search 
failed Port@Router 

reservation

Inform GT 
requester

GT request 
queue

wait GT 
request 
queue

Direct connection 
to/from routers

NoC 
interface

NoC connection

Fig. 6. Block diagram of the NoCManager.

of the MPSoC within seconds (Fig. 4).
Though it is not necessary up to now, the NoCM could

support slot table based GT channels as well allowing more
than only one GT channel at a link. Simply the connection
between horizontal and vertical wires in Fig. 5 have to be
enhanced via more than just one AND-OR-gate. If someone
wants to allow 4 GT channels on a link, 4 AND-OR-gates
will be used in parallel and combined via an additional OR
gate. So, the 4 GT channels on one link can be a allocated and
deallocated via the activation-flipflop. Only if all 4 flip-flops
are deactivated the link will not be used for new GT channel
allocation.

VI. NOCMANAGER RESULTS

Basically, in this paper we want to present the concept
of an MPSoC platform where computation but especially
communication resources can be managed efficiently. In depth
results of the concept shall not be provided here. Especially,
simulations of the complete MPSoC platform and applications
mapped to it are not available up to now. But there exist
results about the NoCManager concerning area consumption
and computation latency. The NoCM was developed in Ver-
ilogHDL and generated out of the XML description for 5x5,
8x8 and 10x10 mesh NoCs. It was synthesized with Synopsys
Design Compiler, 130 nm UMC library.

The resulting area consumption can be found in Table I
where the FIFOs of the GT request queues are not included.
The area consumption scales approximately linearly with the
number of links and modules or routers in a mesh NoC and is
quite acceptable even at a 10x10 mesh with 200 nodes (100
modules + 100 routers) consuming 59 kNANDs.

Timing analysis after synthesis proved, the graph solution
part as the dominating part of the NoCM can run easily at
1 GHz even in 130 nm UMC technology. The shortest virtual



TABLE I
AREA SUMMARY OF THE NOCMANAGER.

NoC Type 5x5 8x8 10x10

No. Modules,No. Routers 25 64 100
No. Links 130 352 560

Area graph matrix (kNAND) 4.4 12.9 20.1

Area edge activation (kNAND) 1.2 3.2 5.0

Area path backtracking (kNAND) 5.2 16.0 24.3

Area NoCManager (kNAND) 18.1 39.2 58.9

Area graph matrix (µm
2) 22, 801 66, 962 109, 025

Area edge activation (µm
2) 6, 065 16, 422 26, 127

Area path backtracking (µm
2) 27, 044 82, 981 126, 425

Area NoCManager (µm
2) 93, 670 203, 458 306, 823

channel from the upper left to the lower right corner in a 5x5
mesh is 10 hops and in a 10x10 mesh it is 20 hops. At 1 GHz

this leads to only 2·10·1 ns = 20 ns and 2·20·1 ns = 40 ns,
respectively, for finding a path in the graph matrix and path
backtracking. Additionally, there are 3 clock cycles for getting
the GT request from the queue and sending the allocation
information to the GT requester.

A signal processing MPSoC in 130 nm technology typically
runs at 200 MHz or at most 500 MHz. In order to make use
of the possible high clock frequency of the graph solution part,
the heart of the NoCM can run at higher frequency than the
remaining MPSoC. Then, the NoCM of an MPSoC containing
25 modules (what is realistic at 130 nm technology) and
equipped with a 5x5 mesh NoC would need typically 10 to
15 500 MHz clock cycles in order to find and allocate a GT
channel (20 ns are 10 cycles at 500 MHz).

The prize for GT channel allocation is therefore very
acceptable in terms of clock cycle delay and area consumption.
Thus, the NoCM can manage communication resources at
task-level and at run-time.

VII. CONCLUSION

In this paper we described the concept of a run-time
NoCManager allocating virtual GT channels on task-level for
NoC based MPSoCs. The NoCM is able to set up virtual
channels in NoCs in few cycles providing guaranteed traffic
with acceptable area consumption and independent of the
underlying network architecture. The global knowledge about
the virtual channel utilization in the NoC allows for successful
search and allocation of channels although the NoC is highly
loaded offering much higher utilization than in simple dis-
tributed systems.

A software solution of the NoCManager might be possi-
ble as well. Solving the shortest path problem on a micro-
controller can be realized. But analysis of a graph containing
200 nodes and 560 edges (like at a 10x10 mesh) is not
easy to realize in software even though all edges have the
same weight. It will consume long computation time and
require additional memory for storage of the NoC graph
representation and program code. It will not be possible to
find and allocate the GT channels at run-time within few dozen

clock cycles. Only the speed-up due to hardware realization
and the parallelization of the route search because of activating
different nodes in parallel in the same cycle allows for efficient
channel allocation on task level.

The NoCManager along with the CoreManager form the
base of a run-time and real-time capable MPSoC platform
with dynamic assignment of tasks to processing elements
transparent for the user. Next, applications have to be mapped
onto the MPSoC platform and simulations will be done
giving information about the efficiency of the combined task
scheduling and allocation of communication resources.

REFERENCES

[1] D. Bertozzi et al. NoC synthesis flow for customized domain specific
multiprocessor systems-on-chip, Trans. on Parallel and Distr. Syst., 16(2),
2005

[2] K. Goossens, J. Dielissen, O.P. Gangwal, S.G. Pestana, A. Radulescu,
E. Rijpkema. A Design Flow for Application-Specific Networks on Chip
with Guaranteed Performance to Accelerate SoC Design and Verification,
In Proc. of the Design, Automation and Test in Europe Conference and
Exhibition (DATE), March 7 - 11 2005, pp. 1182-1187

[3] K. Goossens, J. Dielissen, A. Radulescu. AEthereal Network on Chip:
Concepts, Architectures and Implementations, In IEEE Design and Test
of Computers, Vol 22(5):21-31, Sept-Oct 2005

[4] M. Millberg, E. Nilsson, R. Thid, A. Jantsch. Guaranteed Bandwidth
using Looped Containers in Temporally Disjoint Networks within the
Nostrum Network on Chip, In Proc. of the Design, Automation and Test
in Europe Conference (DATE), Feb. 16 - 20 2004, pp. 890-895

[5] A. Hansson, K. Goossens, A. Radulescu. A Unified Approach to Con-
strained Mapping and Routing o Network-on-Chip Architectures, In Proc.
of the 3rd International Conference on Hardware/Software Codesign and
System Synthesis 2005, Jersey City, NJ, USA, pp. 75-80

[6] J. Hu, R. Marculescu. Energy-Aware Communication and Task Scheduling
for Network-on-Chip Architectures under Real-Time Constraints, In Proc.
of the Design, Automation and Test in Europe Conference (DATE), Feb.
16 - 20 2004, pp. 234-239

[7] D. Wiklund, D. Liu. SoCBUS: Switched Network on Chip for Hard Real
Time Embedded Systems, In Proc. of International Parallel and Distributed
Processing Symposium (IPDPS), April 22-26, 2003, pp. 8-15

[8] O. Moreira, J. J.-D. Mol, M. Bekooij. Online Resource Management in a
Multiprocessor with a Network-on-Chip, In Proc. of the ACM Symposium
on Applied Computing, 2007, Seoul, Korea, pp. 1557-1564

[9] N. Kavaldijev, G.J.M. Smit, P.T. Wolkotte, P.G. Jansen. Providing
QoS Guarantees in a NoC by Virtual Channel Reservation, In Proc. of
the International Workshop on Applied and Reconfigurable Computing
(ARC), Delft, The Netherlands, March 2006

[10] J.P. Robelly, H. Seidel, K.C. Chen, G. Fettweis. Energy Efficiency vs.
Programmability Trade-Off: Architectures and Design Principles, In Proc.
of Design, Automation and Test in Europe Conference (DATE) 2006, pp.
587-592

[11] H. Seidel, G. Fettweis. A Task-Based MPSoC Programming Model,
International System on Chip (SoC) Design Conference (ISOCC), Seoul,
Korea, 26th/27th October 2006.

[12] T. Limberg, B. Ristau, G. Fettweis. A Real-Time Programming Model
for Heterogeneous MPSoCs., In Proc. of the International Workshop on
Systems, Architectures, MOdeling and Simulation (SAMOS’08), Samos,
Greece, July 21 - 24 2008, pp. 75, 2008. Springer-Verlag Berlin Heidel-
berg 2008

[13] M. Winter, G. Fettweis. Interconnection Generation For System-on-Chip
Design, In Proc. of International Symposium on System-on-Chip 2006,
Tampere, Finland, Nov. 13-16, 2006, pp. 91-94.

[14] L. Huelsbergen. A Representation for Dynamic Graphs in Reconfig-
urable Hardware and its Application to Fundamental Graph Algorithms,
In Proc. of ACM/SIGDA 8th International Symposium on Field Pro-
grammable Gate Arrays 2000, Monterey, California, USA, pp. 105 - 115

[15] O. Mencer, Z. Huang, L. Huelsbergen. HAGAR: Efficient Multi-Context
Graph Processors, In Proc. of the Reconfigurable Computing Is Going
Mainstream, 12th International Conference on Field-Programmable Logic
and Applications, 2002, pp. 915 - 924


