
 

 

 

0-7803-7442-8/02/$17.00 © 2002 IEEE 

MIMO Channel Estimation with Dimension Reduction

Matthias Stege, Peter Zillmann, Gerhard Fettweis

Mobile Communications Systems Chair, Dresden University of Technology , Germany
{zillmann, stege}@ifn.et.tu-dresden.de

Abstract

The number of channel estimates that have to be estimated in
Multiple-Input Multiple-Output (MIMO) system is in general
much larger, than in a single antenna communication scheme.
This leads to lower signal to noise ratios (SNR) of the channel
estimates if a constant pilot power independent from the num-
ber of transmit antennas is assumed. The use of long-term spa-
tial channel characteristics can improve channel estimation for
MIMO wireless systems. Separating the signal and the noise
subspace followed by a dimension reduction can significantly
reduce additive noise on channel estimates. This leads to im-
proved channel estimation, especially for MIMO systems with
high numbers of antennas, and to lower pilot power require-
ments.1
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1. Introduction

Wireless systems with multiple transmit and receive antennas
are an important part of discussions on future wireless com-
munication systems, in 3GPP standards and for use in WLAN
systems. In a rich scattering environment, these systems offer
large capacity gains, as shown by information theory [1]. The
MIMO channel estimation system has to provide the receiver
with accurate information of all subchannels to ensure a reliable
suppression of self-interference within a successive interference
cancellation (SIC) receiver.

The need for a sophisticated channel estimation for multiple-
input multiple-output systems is determined by the fact, that the
more transmit antennas are applied in a communication system,
the more channel coefficients need to be estimated. Consider-
ing a constant pilot power which is independent from the num-
ber of TX-antennas, the power of pilot signal emitted from a
specific antenna reduces with increasing number of antennas.
That means that less pilot power is available for the estimation
of a channel coefficient leading to a worse signal to noise ratio
for the channel estimates. That highlights a general problem of
MIMO-techniques. They are designed to exploit more capacity
within a communication system. The MIMO capacity gain can
only be reached, if reliable estimates of the channel coefficients
are available at the receiver.

1This work was financed by the German Federal Ministry of Ed-
ucation, Science, Research and Technology (BMBF) and Ericsson as
part of the COMCAR-project. The authors thank U. Wachsmann and J.
Thielecke for the fruitful discussions.

Noise reduction for the channel estimates can be achieved by
temporal averaging. This requires the channel to be constant
over the averaging time, otherwise a bias would be introduced.
In case of a communications system with multiple transmit an-
tennas orthogonal pilot sequences are transmitted from the dif-
ferent antennas. Thus, a correlation over MTx symbols of
these sequences is necessary to resolve the interference be-
tween them. The resulting signal to noise ratio of the chan-
nel estimates after this correlation is the same as for a single-
input single-output system, but remark, that only one estimate
is available for MTx transmitted pilot symbols [2]. This means,
that there are less pilot symbols available for averaging in a
given coherence interval. This reduces the potential gain, that
could be achieved by temporal averaging.

In [3] and [4] it has been shown, that knowledge of long-term
spatial channel characteristics can improve channel estimation.
This approach can be extended to the problem of MIMO-
channel estimation. In general, a noise reduction on the chan-
nel estimates can be achieved by separating the signal- from
the noise-subspace. The signal-dependent Karhunen-Loève-
Transform (KLT) is applied to determine the signal subspace,
and a dimension reduction algorithm is used to reduce additive
noise power corrupting the channel estimates. The improve-
ment for the estimates and for a V-BLAST MIMO system are
evaluated.

2. Signal Model

Flat fading channel characteristics are assumed throughout the
paper. Furthermore, a discrete-time representations of the sig-
nals are used. For a system with MRx receive antennas, the
receive signal vector y(k) has MRx components and is defined
as

y(k) = r(k) + n(k) = H(k)s(k) + n(k), (1)

where the white Gaussian noise vector process n(k) accounts
for thermal noise and interferences:

n(k) = [n1(k) . . . nMRx (k)]T . (2)

The components of n(k) are zero mean, complex random vari-
ables with variance σ2

n. Thus, this random process is sometimes
also called temporally and spatially white.

The transmitted signal vector s(k) of MTx complex symbols,
where MTx is the number of transmit antennas, may be repre-
sented by

s(k) = [s1(k) . . . sMTx (k)]T . (3)

Consequently, H(k) is a MRx×MTx matrix of complex chan-
nel coefficients hi,j(k) with 1 ≤ i ≤ MTx and 1 ≤ j ≤ MRx,
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Parameter Microcell Picocell

distance BS → MS [m] 300 10
cluster diameter [m] 10 30

average AOA [deg] 30 0
AOA angular spread ≈ 1 ≈ 110
(RMS) [deg]
AOA angular spread ≈ 9 ≈ 350
(max-min) [deg]

average AOD [deg] 53 90
AOD angular spread ≈ 2 ≈ 85
(RMS) [deg]
AOD angular spread ≈ 14 ≈ 350
(max-min) [deg]

Table 1: Parameters for MIMO scenarios

reading

H(k) =

�
��

h1,1(k) . . . hMT x,1(k)
...

. . .
...

h1,MRx(k) . . . hMT x,MRx(k)

�
�� . (4)

The channel is assumed to be passive and normalized, resulting
in

E
� | hi,j(k) |2 � = 1. (5)

The actual transmission coefficients hi,j(k) result from a super-
position of different wavefronts reflected by a set of scatterers
within the scenario. Two different scenarios are investigated in
this paper. The Picocell scenario demonstrates a typical MIMO
scenario with low spatial correlation. Transmit and receive an-
tenna arrays lie within one set of narrow scatterers. Angular
spreads at transmitter and receiver are large. The Microcell sce-
nario serves as a comparison. The scattering cluster is small
and and some distance away from the antennas. Therefore, an-
gular spreads at both transmitter and receiver are also small.
This leads to highly correlated channel coefficients. The Mi-
crocell scenario can be considered as a typical beamforming
scenario due to that high correlation. Table 1 summarizes im-
portant parameters of the scenarios. For a detailed description
of this MIMO channel model, the reader is referred to [5, 6].

Finally, the problem of channel estimation shall be described.
The output of an estimator operating on orthogonal pilot se-
quences from the transmit antennas may be expressed by

Ĥ(k) = H(k) + N(k), (6)

where the estimation error N(k) results from noise and inter-
ferences and consists of zero mean, complex Gaussian random
variables with variance σ2

n. This is due to the fact that MTx

pilot symbols have to be correlated to resolve interference be-
tween them.

3. KLT and Dimension Reduction

Signal transforms are frequently used in the field of digital sig-
nal processing. Transformed signals can yield better insight
into certain properties. Well known orthonormal transforms are
the Discrete Cosine Transform (DCT) and the Discrete Fourier
Transform (DFT) [7]. Both of these transforms have a fixed set

of orthonormal basis vectors, which means, that the basis vec-
tors are independent of the actual signal to be processed.

In contrast signal-dependent transforms, such as the Karhunen-
Loève Transform (KLT) are known. It’s basis vectors are
matched to the statistics of the input signal to deliver a set of
uncorrelated coefficients in the transform domain. The KLT is
the optimum least squares decorrelating transform and has been
successfully applied to problems in the fields of speech pro-
cessing and pattern recognition [8]. It can be shown [7], that it
concentrates a maximum amount of signal energy into a small
number of orthogonal Eigenspaces. But when only a few signal
dimensions contain a significant amount of signal energy, these
dimensions are sufficient for an approximate reconstruction of
the signal. Additive uncorrelated noise, in contrast, results in
energy of equal size σ2

n in all dimensions of the Eigenspace.
Therefore, in the KLT domain, it is possible to separate the sig-
nal space from the evenly distributed noise by discarding coef-
ficients, that contain mainly noise power.

For the problem of channel estimation, the input vector process
to be investigated is a vector form of Ĥ(k),

ĥ(k) = vec(Ĥ(k)) = vec(H(k)) + vec(N(k)), (7)

= h(k) + n̂(k). (8)

The operation vec(H(k)) defines a vector of length MTx ·MRx

obtained by stacking the columns of H(k). KLT basis vectors
are obtained from the input signal’s estimated covariance matrix

Rĥ = E
�
ĥĥH

�
(9)

via Eigenvalue Decomposition (EVD) [9]. An EVD of the her-
mitian matrix Rĥ can be written as

Rĥ = UΛ2UH , (10)

where U is the eigenvector matrix of Rĥ and Λ2 is a diagonal
matrix containing the eigenvalues of Rĥ. Essentially, the KLT
changes the basis vectors of the random vector process to the
eigenvectors in U and an eigenvalue represents the projection
of signal- and noise energy onto the corresponding vector. With
knowledge on the structure of the process ĥ, Λ2 can be written
as

Λ2 = diag
�
λ2

1, . . . , λ
2
N

	
= diag

�
σ2

1 + σ2
n, . . . , σ2

N + σ2
n

	
, (11)

where σ2
i denotes the signal energy and σ2

n the noise variance.
N is the number of eigenvalues and thus the dimension of ĥ(k).
Now, when the signal part of a certain eigenvalue is smaller
than the noise part, it is beneficial to discard this component for
reconstruction, because the overall mean squared error (MSE)
of the estimation will be smaller then. Dimension reduction is
done by using the reduced transform matrix UL, consisting of
the first L ≤ N eigenvectors. This can be viewed as a kind
of filtering by a filter with an ideal lowpass characteristic. The
bidirectional transform and dimension reduction can be done in
one step, since

h̃ = ULUH
L ĥ = ΦLĥ, (12)

where h̃ denotes the filtered estimate of ĥ. Projector matrix ΦL

is idempotent and therefore holds [10]:

ΦL = ΦH
L = Φ2

L. (13)
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Such a transform results in two types of errors: First, the signal
energy within the eigenvalues λ2

L+1 . . . λ2
N is discarded, lead-

ing to a Bias. The remaining noise within the reduced signal
space still corrupts the signal. The optimum MMSE criterion
for selecting the number of dimensions Lopt is therefore known
as Bias-Variance-Tradeoff [11]. It minimizes the sum of both
errors after the transform and has the form

Lopt = arg min
L



N�

i=L+1

(λ2
i − σ2

n) + Lσ2
n

�

= arg min
L



N�

i=L+1

λ2
i + (2L − N)σ2

n

�
, (14)

which follows from the eigenvalue structure shown in (11). Re-
mark, that the noisy eigenvalues λ2

i must be known to solve
(14). They are obtained from the EVD of Rĥ. Additionally
knowledge on the noise variance σ2

n is required. This can be
estimated from known pilots signals.

This section is concluded by a closer observation of the channel
coefficients’ covariance matrix. Note that Rĥ is the long-term
spatial covariance matrix, averaged over the time duration for
which the spatial characteristics of the scenario remain approx-
imately constant. This time is usually much longer than the
coherence time of the channels, describing the short-term chan-
nel variations. In practice, Rĥ could simply be estimated via
block-averaging over an averaging length B:

Rĥ =
1

B − 1

B−1�
k=0

ĥ(k)


ĥ(k)

�H
. (15)

It is important to choose B sufficiently large to get an accu-
rate estimate. However, large block-sizes contribute to latency
and processing power requirements. Other, more sophisticated
methods are possible but beyond the scope of this work.

4. Properties of the Channel Estimates
After the Transformation

After applying a KLT, there are still some error components
on the channel estimate h̃. The mean squared error (MSE) ε2

h̃
follows:

ε2
h̃ = ||h(k) − h̃(k)||2F (16)

= ||h(k) − ΦLĥ(k)||2F (17)

(|| ||2F defines the Frobenius norm [9].) Using (8) the MSE
can be expresses in terms of a bias b(k) and an additional noise
ñ(k):

ε2
h̃ = ||(I − ΦL)h(k) + ΦLn̂(k)||2F (18)

= ||b(k) + ñ(k)||2F (19)

The properties of the remaining noise are investigated first.
Since L ≤ N uncorrelated noise processes are transformed
back onto N processes, it follows that these noise processes
must be mutually correlated in general. Let the remaining noise
vector can be denoted by

ñ(k) = ΦLn̂(k), (20)

where n̂(k) = vec(N(k)).

With (13) the noise covariance matrix can then be written as

Rñ = E
�
ΦLn̂(k)



ΦLn̂(k)

�H�
= σ2

nΦLINΦH
L

= σ2
nΦL. (21)

Remaining noise processes are in general spatially mutually
correlated, but they are still temporally white, because every
process is a weighted sum of white input processes.

Next, the bias b(k) shall be analyzed. It is an approximation er-
ror resulting from discarded signal energy and can be expressed
by

b(k) =


I − ΦL

�
h(k), (22)

and this notation reveals that b(k) cannot considered to be tem-
porally white. Being a weighted sum of the channel coefficients
itself, it has the same spectral characteristics as the coefficients.
The correlation matrix of the subchannels after the transforma-
tion can be obtained in a similar way as (21), resulting in

Rh̃ = ΦLRhΦ
H
L , (23)

with Rh being the covariance matrix of the channel coefficients
vector h(k) (without noise). This again leads to some spatially
correlated error component. The temporal characteristics are
the same as the fading characteristic of the channel coefficients.

5. Channel Estimation Improvement

With the framework developed so far it is possible to investigate
the ability of the system to improve channel estimation. Eigen-
value distributions of typical scenarios were simulated. Figure 1
shows characteristic Eigenvalue distributions for Picocell and
Microcell scenarios with MTx = MRx = 4 and 8. Eigenval-
ues are normalized to a sum of 1, modeling fixed transmit power
for different numbers of transmit antennas. Only nonzero eigen-
values are shown. Since 30 scatterers are considered within
the cluster, at most 30 eigenvalues greater than zero can oc-
cur. The Picocell case is a typical MIMO scenario for systems
aiming at exploiting the higher capacity of a rich scattering en-
vironment. Due to the small correlation between subchannels,
a higher number of eigenvalues contains significant amounts of
signal energy. Compare this to the Microcell scenario. A large
amount of signal energy is contained in the first eigenvalue, and
the curve is steeply decreasing. This is a beneficial situation
for dimension reduction. However, the Microcell scenario is
not well suited for MIMO systems like V-BLAST, because the
low MIMO-capacity in these channel scenarios [6]. It is a typi-
cal beamforming scenario and shall serves only for comparison
here. The other extreme case, where the channel coefficients
were completely uncorrelated, all eigenvalues would have the
same value. No improvement is possible then with the KLT.

These results were now used to evaluate the possible noise re-
duction of the proposed channel estimator. Criterion (14) was
computed for different values of σ2

n, and the resulting overall
MSE compared to the input MSE of Nσ2

n delivers the effective
noise reduction . Figure 2 summarizes the results. It shows the
noise reduction versus the pilot SNR before the transformation.
In general, Microcell scenarios offer more possibilities for im-
provement because of the signal energy being concentrated in
very few dimensions. This leads to a small value of Lopt, and
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Figure 1: Average nonzero eigenvalues for certain scenarios

most of the noise power can be discarded. Picocell shows less
improvement, especially for small numbers of antennas, but in
the case of MTx = MRx = 8, significant improvements are
possible. The algorithm becomes more efficient, as higher num-
bers of antennas are available. Another important property of
the system is, that higher gains are obtained for low input SNR.
That is extremely useful, since it helps reducing the pilot power
to a lowest possible level to avoid interference by to other par-
allel transmitted signals.
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Figure 2: Channel estimation improvement for certain scenarios

6. MIMO Simulation Results

Figure 3 shows the principle of the MIMO-channel estimation
with dimension reduction. Simulations were conducted to eval-
uate the influence of real channel estimation on the performance
of a V-BLAST MIMO system. V-BLAST is a, layered scheme
aiming at MIMO capacity gains. Independent data streams are

transmitted over the different antennas. The receiver uses Serial
Interference Canceling (SIC) and detects the most reliable layer
first. Remodulated, already detected layers are subtracted from
the input signal to improve detection of the remaining layers.
For a detailed description of the system, the reader is referred to
[12].
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Figure 4: Performance of a V-BLAST, Picocell, 4 × 4 system
vs. pilot SNR

A pilot structure similar to the 3GPP-standard was assumed.
That means, that a continuous pilot signal is available over a pi-
lot channel (CPICH) along with the data channel. The overall
pilot power is constant independent from the number transmit
antennas. The data layer SNR is held constant at a value of
15 dB. Bit error rates are shown versus different pilot SNR for
ideal channel knowledge, conventional channel estimation and
KLT-based estimation. Thus, possible pilot power savings can
be seen directly. The V-BLAST system was only simulated for
Picocell scenarios, since it requires a rich scattering environ-
ment in order to achieve capacity gains.

Figure 4 displays the results for the 4 × 4 case. About 1.5 - 2
dB pilot power reduction can be achieved through dimension
reduction. Equivalently, when the same pilot level is used as for
conventional systems, performance improves significantly. Fig-
ure 5 reveals the potential of the proposed system: In an 8 × 8
system, 4.5 dB improvement are gained at a BER of 10−2, and
still more than 4 dB at a BER of 10−3. As already shown in
Figure 2, more improvement is reached for high numbers of
antennas. This is a very important property, because with con-
ventional systems, channel estimation gets worse for increasing
number of transmit antennas. The reason for that is the smaller
amount of pilot power for each antenna. The pilot SNR there-
fore gets worse, and conventional channel estimation systems
offer a degraded performance. The dimension reduction system
reverses this behavior and ensures more reliable channel esti-
mation even for large antenna arrays at the transmitter.

7. Summary

A novel approach for estimating channel coefficients for MIMO
wireless systems has been presented in this paper. The signal-

420



(k)

~(k
Σ
L

i=1
i i

RR

temporal
Averaging

temporal
Averaging

h

>

SVD
of strongest

Eigenvalues

1u

Mu

2u Select L

EV’s

Estimation
of 

1

uN

u

uL

Hz =L h

>

h
u z (k)w=

u1

Hz =1 h

>

Figure 3: Overall Principle of the KLT-based MIMO Channel Estimation

−2 0 2 4 6 8 10 12 14 16
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Pilot SNR/bit / [dB]

un
co

de
d 

B
E

R Parameter:
P=30 paths
Data SNR=15 dB

without KLT
KLT−based estimation
perfect CSI

Figure 5: Performance of a V-BLAST, Picocell, 8 × 8 system
vs. pilot SNR

dependent decorrelating KLT enables the system to reduce the
number of coefficients in the transform domain used for esti-
mation, provided the noise is uncorrelated and there is some
subchannel correlation in the MIMO scenario.

Simulation results in section 6 showed the performance of a
V-BLAST reference system. Pilot power can be significantly
reduced by the concept presented here. The system is beneficial
especially for high numbers of antennas and is therefore able to
overcome the effect of splitting pilot power between the anten-
nas. It has to be mentioned, that only an uncoded V-BLAST
system was discussed here, similar to the approach in [13]. For
a complete view of the the effect of channel estimation errors
coding has to be considered as well.
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