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Abstract—Diverse requirements are foreseen for the 5G cel-
lular system and new waveforms are being researched for the
physical layer (PHY), where the non-orthogonal Generalized
Frequency Division Multiplexing (GFDM) is one candidate.
Its inherent self-interference makes receiver design challenging,
particularly when besides inter-carrier interference (ICI) and
inter-symbol interference (ISI) also inter-antenna interference
(IAI) occurs, as in systems that employ spatial multiplexing
(SM) to increase the throughput. To encounter this interference,
we apply the prominent minimum mean squared error with
parallel interference cancellation (MMSE-PIC) iterative receiver
structure to GFDM, and provide a formulation that is suitable for
a low-complexity implementation. We analyze the decoding per-
formance employing a well-known current WiMax LDPC code.
The proposed demapping algorithm can be implemented with
complexity that scales linearly with the number of subcarriers of
the system. Analysis of information transfer characteristics shows
that the MMSE-PIC demapper for GFDM exhibits potential to
outperform the OFDM demapper with a matching code, however,
simulations of frame error rate (FER) show inferior performance
of GFDM. These results emphasize the importance of a joint
waveform and code design in order to exploit the full potential
of the MMSE-PIC receiver structure for GFDM.1

I. INTRODUCTION

The upcoming fifth generation (5G) of cellular mobile net-
works will pose diverse requirements on the underlying phys-
ical layer (PHY) of the system. As such, not only a massively
increased data rate but also improved flexibility, coexistence
and significantly reduced latency are demanding challenges
[1]. Even though not all criteria are required to be fulfilled for
a single use case, it is desirable that a single flexible PHY is
able to fulfill these demands simply by changing configuration
options [2]. Among other waveforms such as universally
filtered OFDM [3] and Filterbank multicarrier (FBMC) [4],
Generalized Frequency Division Multiplexing (GFDM) [5] has
been proposed as a 5G candidate waveform, that matches well
the foreseen requirements. Its good spectral localization makes
it suitable for coexisting asynchronous systems [6]; whereas
its circular structure aids block-processing in the frequency
domain, giving rise for low-complexity implementations of
transmitter and linear receivers [7].

Key methods for increasing the data rate of a system include
widening the transmit band width or increasing the number
of transmit and receive antennes. Widening the transmit band

1Rudimentary MATLAB code can be acquired from
http://wwwpub.zih.tu-dresden.de/~vf5gdemo/GFDM/.

width is commonly achieved by either carrier aggregation [8]
or moving to the mmWave frequency band [9], where wide
continuous frequency bands are available.

Applying multiple-input multiple-output (MIMO) tech-
niques to increase the overall system’s data rate has been thor-
oughly researched during the last 50 years [10] and different
MIMO techniques will be applied to any 5G system. Thus,
any 5G waveform candidate is required to be compatible with
different MIMO techniques. The implementation complexity
increases significantly with the system size, and hence low-
complexity solutions are significantly important, especially
with upcoming Massive MIMO techniques [11].

The equivalent channel of a GFDM system can be un-
derstood as a large-scale MIMO system and hence common
MIMO techniques can be applied. GFDM was presented to be
compatible with both the Alamouti Space-Time coding tech-
nique [12], [13] and with spatial multiplexing (SM) [14], [15],
[16]. In [16] linear receiver techniques for GFDM have been
shown to obtain poor coded performance compared to orthog-
onal schemes as Orthogonal Frequency Division Multiplexing
(OFDM). However, in [15] a non-linear receiver technique is
presented that combines a sphere decoder (SD) with successive
interference cancellation (SIC) to achieve significant gains in
the uncoded case compared to an equivalent OFDM system.

Furthermore, in [17] it was suggested, that in principle
GFDM can achieve a higher coded capacity than OFDM, when
the fading channel becomes severely frequency selective, as it
can appear in low latency scenarios, employing short packets
[1]. Additionally, in [14] a non-linear iterative receiver struc-
ture was presented, that can actually achieve higher throughput
than an equivalent OFDM system.

In this paper, we tailor the well understood minimum
mean squared error with parallel interference cancellation
(MMSE-PIC) iterative detection scheme [18], [19], [20] for
MIMO detection of spatially multiplexed GFDM streams. In
particular, we exploit the specific system structure of GFDM
to yield an algorithm with reduced complexity compared to
common approaches, e.g. from [20]. MMSE-PIC has been
successfully applied to OFDM transmission schemes [21] and
shown to perform close to the optimal maximum likelihood
(ML) detection which is achieved with a high-complexity SD.
Since each iteration in MMSE-PIC is merely a linear detection,
the overall system complexity is far below that of an optimal
SD approach, especially when the system size increases.
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Fig. 1. Block diagram of the MIMO-GFDM system.

Subsequently, we will derive the equivalent MIMO sys-
tem model for GFDM, from which we shortly present the
MMSE-PIC iteration process. Because of inherent inter-carrier
interference (ICI) and inter-symbol interference (ISI), the
equivalent system matrix is significantly larger than that of
an equivalent OFDM system. Accordingly, applying conven-
tional linear detection to this problem might already be too
complex on todays hardware. Hence, we reformulate the
detection equations, leading to an algorithm which reduces
the computational burden of each iteration. We exploit the
band-diagonal structure of the resulting system matrix to yield
an implementation concept which scales linearly with the
number of subcarriers. Additionally, we employ an algorithm
proposed in [22] that is used to estimate the diagonal of
an inverse matrix without explicitely calculating this inverse.
This technique efficiently reduces implementation complexity
further. We show that, depending on the rolloff of the pulse
shaping filter for GFDM and channel characteristics, the same
frame error rate (FER) as for OFDM can be achieved with the
non-orthogonal GFDM system. However, for longer channels
the analyzed system yields inferior performance. Subsequent
analysis of the information transfer characteristices of the
GFDM and OFDM MMSE-PIC demapping process reveals
a superior potential for GFDM.

The remainder of this paper is organized as follows: Sec. II
introduces the GFDM system and derives the overall system
model. This system model is used in Sec. III for the derivation
of the MMSE-PIC demapping process and also the low-
complexity formulation of the process is provided. Sec. IV
presents simulation results, comparing OFDM and GFDM
MMSE-PIC coded performance in various channel conditions
and provides analysis of the information transfer characteristic
of both systems. Finally, conclusions are drawn in Sec. V.

Notation: ~x,X, XT, XH, ◦ and � denote vectors, matrices,
transpose, conjugate transpose, and elementwise multiplication
and division, respectively. Λ = diag(x1, . . . , xN ) is a diagonal
matrix with Λii = xi and diag(X) is the diagonal of X as a
vector. ~1 is a column vector of all ones. dxe2 denotes the
smallest power-of-two that is greater or equal to x. DFTN{·}
and F denote N-point discrete Fourier transform (DFT) and
DFT matrix. Finally, 〈x〉N is the remainder of x modulo N .

II. SYSTEM MODEL

A. Transceiver Model

Consider a R × T MIMO system with R receive and T
transmit antennas. The system operates in SM mode with no

channel state information (CSI) at the transmitter, as illustrated
in Fig. 1, where T̄ = T − 1, R̄ = R− 1. The payload bit
vector ~b is encoded and mapped to complex constellation
symbols with a channel coder in the ENC block. Then, the
data is split into independent streams and one GFDM block is
transmitted from each antenna with equally distributed power.

Each GFDM block consists of N = KM samples and
is divided into K subcarriers and M subsymbols. The data
symbol transmitted on the kth subcarrier in the mth transmit
symbol from the tth transmit antenna is denoted by d

(t)
k,m

and taken from a complex quadrature amplitude modulation
(QAM) constellation set S. The data symbols are transmitted
on circularly time-frequency shifted versions of the prototype
filter g[n], which are critically sampled in the time-frequency
plane, i.e. ∆T∆F = 1, where ∆T and ∆F are distances
between GFDM data symbols in time and frequency domain,
respectively. Accordingly, the transmit signal x(t)[n] of one
block of the tth transmit antenna equals

x(t)[n] =
∑
k∈K

∑
mM

gk,m[n]d
(t)
k,m, n = 0, . . . , N − 1 (1)

gk,m[n] = g[〈n−mK〉N ] exp(j2π knK ), (2)

where K and M denote the set of allocated subcarriers and
subymbols, respectively. The prototype filter g[n] is a band-
limited filter such as a (root) raised cosine filter with rolloff
α and hence, DFTN{gk,m[n]}[f ] = 0,∀|f − kM | > 1+α

2 M .
The linear modulation equation (1) is compactly written as

~x(t) = A~d(t), (3)

where ~x(t) = (x(t)[n])n=0,...,N−1 and A is a N ×KonMon
matrix, which contains all (gk,m[n])n=0,...,N−1 as its columns.
Kon ≤ K and Mon ≤ M are the cardinalities of K and
M, respectively. Further, ~d(t) contains the transmitted data
symbols d(t)

k,m in the appropriate order.
The signals propagate through independent Rayleigh block-

fading multipath channels with channel impulse response
(CIR) h(r,t)[n] between the tth transmit and rth receive an-
tenna. By employing a cyclic prefix (CP) between subsequent
GFDM blocks that is longer than the CIR, after CP removal at
the receiver the convolution with the channel appears circular.
Then, the received signal at the rth receive antenna equals

~y(r) =

T̄∑
t=0

H̃(r,t)A~d(t) + ~w(r), (4)

where H̃(r,t) is the N ×N circular convolution matrix based
on the impulse response h(r,t)[n] and ~w(r) denotes AWGN
with distribution ~w(r) ∼ CN (0, N0I).

Application of the N -point DFT matrix F to the signal
received on each receiver antenna yields
~Y (0)

...
~Y R̄


︸ ︷︷ ︸

~Y

=

H(0,0)FA . . . H(0,T̄ )FA
...

. . .
...

H(R̄,0)FA . . . H(R̄,T̄ )FA


︸ ︷︷ ︸

H̃


~d(0)

...
~d(T̄ )


︸ ︷︷ ︸

~d′

+ ~W,

(5)
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Fig. 2. Block diagram of iterative MIMO detection with using MMSE-PIC.

where H(r,t) = FH̃(t,r)FH is a diagonal matrix containing
F~h(t,r) on the diagonal and ~W is the AWGN in the frequency
domain. Accordingly, the columns in each block H(r,t)FA
of H̃ contain only B = (1 + α)M non-zero elements. Now,
consider a permutation matrix P such that d(t)

k,m appears at the
(t + Tm + TMonk)th position of P~d′ and let H = H̃PT be
a column permutation of H̃ so that

~Y = H~d+ ~W, (6)

where ~d = P~d′. Note that (6) models a general large-
scale linear system, where readily available MIMO detection
algorithms such as minimum mean square error (MMSE) or
SD [10] detection can be applied in principle. In this paper,
we analyze the performance of iterative MIMO detection for
GFDM using a soft-in soft-out (SISO) MMSE-PIC demapper.

B. Iterative MMSE-PIC Detection

In the detector, soft information in terms of log-likelihood
ratio (LLR) values is iteratively exchanged between the
MMSE-PIC demapper and channel decoder, as shown in
Fig. 2. The process starts with an initial MMSE guess of
the transmitted bits by the MMSE-PIC demapper which is
purely based on the received signal. The decoder refines this
initial estimate and feeds back its a-posteriori information to
the demapper. There, this information is used to pre-cancel
interference before another MMSE demapping operation is
performed. After several iterations, the final estimate of ~̂b is
given based on the signs of the a-posteriori LLR of the de-
coder. Note that compared to e.g. iterative turbo detection [18],
instead of extrinsic information, we feed back a-posteriori
information from the decoder to the demapper, such that the
current estimate of the received signal is accurately cancelled
from the received signal [19].

III. PARALLEL INTERFERENCE CANCELLATION

A. Conventional MMSE-PIC Description

From the linear model (6), the SISO MMSE-PIC demapping
algorithm as described in [20] is derived in the following. The
process can be divided into 4 steps, given by
1) Computing soft-symbols from a-priori knowledge of the
transmitted bits. The a-priori knowledge for the bth bit of the
sth transmit symbol is encoded in the LLR value LAs,b with
Pr[bs,b = 1] = 1

1+exp(LA
s,b)

. Accordingly, the mean d̂s and

variance es of the estimate for the sth transmit symbol are

d̂s =
∑
d∈S

P [di = d]d (7)

es =
∑
d∈S

P [ds = d]‖d− d̂s‖2. (8)

2) Parallel interference cancellation. Let Non and ~hs denote
the number of columns and the sth column of H, respectively.
For each symbol s, the estimated interference from all other
symbols is cancelled from the received signal, leading to

~Ys = ~Y −
Non−1∑
s′ 6=s
s′=0

~hs′ d̂s′ = ~hsds + ~n, (9)

where ~n is the remaining noise-plus-interference.
3) MMSE Filtering each signal ~Ys with filter ~wH

s . The filtering
yields a new estimate ẑs for the sth symbol, given by

ẑs = ~wH
s
~Ys = µsds + ~wH

s ~n, (10)

where ~wH
s is the sth row of the matrix WH given by

WH = X−1HH, (11)

with X = HHHΛ + N0I, Λ = diag(e1, . . . , eNon
) and

µs = ~wH
s
~hs. The remaining uncertainty Var[zs] equals [20]

Var[zs] = µs − esµ2
s. (12)

4) Extrinsic LLR computation. From the refined soft-symbol
estimates zs, the LLRs LEs,b are finally estimated by assuming
that the noise terms ~wH

s ~n on each zs are independent and
Gaussian distributed with variance Var[zs]. Application of the
max-log approximation [24], the LEs,b are approximated by

LEs,b =
µ2
s

µs − esµ2
s

(
min
d∈S(0)

b

| zsµs
− d|2 − min

d∈S(1)
b

| zsµs
− d|2

)
,

(13)

where S(0)
b ,S(1)

b ⊂ S are the subsets of all constellation
symbols where the bth bit is 0 or 1, respectively [20].

B. Reduced Complexity Adaptation to GFDM

We propose a reformulation of the MMSE-PIC algorithm
from [20] which can be implemented with significantly re-
duced complexity. It was already shown in [25] and [26]
that steps 1) and 4) can be easily calculated, respectively.
However, even though also the parallel interference cancella-
tion (PIC) and MMSE filtering as formulated in [20] already
offer reduced complexity compared to previously published
approaches [27], [25], the algorithm and implementation in
[20] proposes explicit calculation of WH by (11). Unfortu-
nately, even in case X and H obey special structures such as
some sparsity pattern to simplify the calculation of WH, WH

tends to be a fully occupied matrix. Hence, both storage of
WH and explicit filtering via (10) can become prohibitively
complex for large-scale systems. Instead, in this paper we



TABLE I
SUMMARY OF THE PROPOSED MMSE-PIC ALGORITHM, ASSUMING α = 1, I.E. B = 2M .

Calculation Required multiplication count Remark

Initialization 1) G = HHH 1
2

2Non2MonT · (BR)2 = 8KonMonM2R2T (a)
2) YMF = HH~Y Non ·BR = 2KonMonMRT -
3) GV NonB · 2MonT ≈ 8KonM3

onT
3 (b)

For each iteration 1) X = GΛ + σ2
nI Non · 4MonT = 4KonM2

onT
2 -

2) X = LU 2Non · 2MonT (3MonT + 1) ≈ 12KonM3
onT

3 (c)

3) ~n0 = YMF −G
~̂
d Non · 4MonT = 4KonM2

onT
2 -

4) ~u = (LU)−1~n0 2Non · 6MonT = 12KonM2
onT

2 (d)
5) X = X−1(GV) 2Non · 6MonT · B ≈ 48KonM3

onT
3 (b),(d)

6) ~̂µ = [(V ◦ X )~1]� [(V ◦V)~1] NonB ≈ 2KonM2
onT

2 (b),(e)
(a) 1

2
arises from the fact that G is Hermitian and hence the lower triangular part can be inferred from the upper part.

(b) Assuming B = 4MonT
(c) Operation count taken from [23, Function zgbtrf ]
(d) Operation count taken from [23, Function zgbtrs]
(e) Only V ◦ X counts, as (V ◦V)~1 = d4MonT e2~1 and division is implemented by simple bitshift.

propose an algorithm that can exploit special structure of a
given H for an implementation with reduced complexity.

We start by reformulating (9) to

~Ys = ~Y −H
~̂
d+ ~hsd̂s (14)

where ~̂
d is the vector of all soft-symbol estimates from (7).

Now, from (10) we have

~̂z = X−1(~YMF −G
~̂
d) + diag(X−1G) ◦ ~̂d, (15)

where ~YMF = HH~Y and G = HHH is the Gram matrix of the
columns of H. Hence, instead of explicitely calculating WH

to calculate the PIC and MMSE filtering in (15), it suffices to
know the solution of

~u = X−1(~YMF −G
~̂
d) (16)

and ~µ = diag(X−1G). (17)

For GFDM, each column of H contains only BR non-
zero elements, hence ICI only appears between adjacent sub-
carriers. Accordingly, G = HHH becomes a band-diagonal
matrix with upper and lower bandwidth 2MonT . Then, LU
decomposition of X and forward-backward substitution is
performed with complexity that scales linear with matrix size
and quadratic with bandwidth [23, Functions zgbtrf, zgbtrs].

In order to calcuate ~µ, we can resort to an estimation
procedure as shown in [22]. Instead of explicitely calculating
X−1G, we calculate X = X−1(GV) where V is an arbitrary
real matrix. Then, an estimate of ~µ is given by

~̂µ = [(V ◦ X )~1]� [(V ◦V)~1]. (18)

The accuracy of the estimation depends on both the structure
of V and X−1G. In general, the estimation (18) is exact, if
the off-diagonal elements of VVT are zero where X−1G is
non-zero. Optimally, V = I, however in this case the inverse is
implicitely calculated, leading to no reduction in complexity.

Instead, noting that both X and G are band-diagonal, we
can assume that X−1G is mostly concentrated within the

bandwidth 4MonT . We then design a V such that VVT is zero
within the bandwidth 4MonT . A straight forward approach
are submatrices of Hadamard matrices, as shown in [22]. Let
H denote the Hadamard matrix of dimension dNone2. Then,
V is given as the first Non rows and first B = d4MonT e2
columns of HT. With this operation, we obtain a matrix V
where VVT is zero within the bandwith 4MonT [22] and
accordingly, (18) yields accurate results. By estimating the
diagonal in (17), the number of right-hand-sides in (17) is
only proportional to the bandwidth X instead of its overall
size. Hence, the complexity does not depend on the number
of allocated subcarriers, keeping overall complexity low.

The proposed algorithm for PIC and MMSE filtering is
summarized in Tab. I, where also the number of required
complex multiplications for each step is listed. Note that the
overall complexity is linear with the number of allocated
subcarriers and cubic with the number of allocated subsymbols
and transmit antennas. This result is reasonable, since MonT
symbols overlap on each received frequency bin, and accord-
ingly, we expect a cubic complexity for the corresponding
matrix inversion. On the other hand, since the number of inter-
fering symbols does not depend on the number of subcarriers,
there exists an algorithm that scales linearly with the number
of subcarriers Kon. For comparison, performing the proposal
from [20] for the detection, we end up with a complexity that
scales quadratically with the number of subcarriers and cubic
with the number of subsymbols and transmit antennas, when
already taking advantage of the fact that G is band diagonal.

Note that the proposed algorithm can also be suitable for
massive MIMO systems, where the Gram matrix G tends to
be diagonally dominant [28] and equally, efficient solutions to
(16) and (17) can be found.

IV. NUMERICAL RESULTS

A. Information Transfer Characteristic

As a performance metric that is independent of the chosen
channel channel code, the information transfer charts of the
MMSE-PIC demapper for GFDM and OFDM with different
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Fig. 3. Information transfer chart for the MMSE-PIC demapper. Eb/N0 denotes receive SNR.
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TABLE II
SIMULATION PARAMETERS

Parameter Symbol GFDM OFDM

# Available Subcarriers K 64 7 · 64
# Allocated Subcarriers Kon 48 7 · 48
# Subsymbols M 7 1
# Allocated Subsymbols Mon 7 1
# Number of Tx, Rx antennas T,R 2 2
Prototype filter g[n] raised cosine (RC) Rect
Filter rolloff α 0 or 1 -

Modulation order S 64-QAM
Channel Model Uniform PDP, 32, 64 or 128 taps
Code - WiMax LDPC block code
Code rate - 1/2
Code block length - 2016 bits

rolloffs and channel lengths, using the system parameters from
Tab. II are shown in Fig. 3 where a contiguous subcarrier
allocation is considered. It is assumed that the transmitter
and receiver are ideally synchronized and perfect CSI is
available at the receiver. In the simulation, independent block
Rayleigh-fading channels with uniform power delay profile

(PDP) are assumed. The a-priori LLR LAs,b are generated
as independend Gaussian random variables with distribution
LAs,b ∼ N (±σ

2
A

2 , σ
2
A), where σ2

A is calculated from the inverse
J-function σ2

A = J−1(I(b;LAs,b)) [24]. At the output of the
demapper, the mutual information I(b;LEs,b) between b and
LEs,b is measured with the histogram approach from [29].

As can be seen, for the initial iteration (i.e. Ia = 0), the
OFDM system outputs higher extrinsic information than the
GFDM system. The gap to the OFDM system increases with
the channel length, rolloff and SNR. This observation can be
explained by the amount of interference that occurs in the
system. For the OFDM system, only inter-antenna interference
(IAI) occurs, whereas for GFDM with α = 0 IAI and ISI
appears. Finally, with α = 1, 3-dimensional interference IAI,
ISI and ICI occurs which needs to be cancelled by the system.

Initially, the MMSE demapper performs worse, with more
interference. When the a-priori information in the system in-
creases, the extrinsic information Ie of the the GFDM systems
approaches that of OFDM and at approximately Ia = 0.8,
GFDM outperforms OFDM. For perfect a-priori information,
i.e. Ia = 1, GFDM achieves a higher Ie than OFDM. The gap



increases with the channel length. This suggests the possibility
that GFDM with a well-designed code can indeed outperform
OFDM in severely frequency selective channels, as has been
forecast in [17] and was also numerically proved in [14].

B. Simulation of Frame Error Rate

Fig. 4 compares the coded FER of a GFDM and an OFDM
system using the MMSE-PIC iterative receiver structure for
different channel lengths. The channel code counterpart was
chosen to be a state-of-the-art WiMax half-rate low-density
parity check (LDPC) block code due to its reduced latency
and implementation complexity compared to Turbo codes
[30], [31], [32]. As visible, performing iterative detection can
significantly reduce the FER.

For OFDM, the gain between no iterations and the con-
verged system at 20 iterations equals 1.8, 1.6 and 1.6dB at a
FER of 10−2 for 32, 64 and 128 channel taps, respectively.
For the GFDM system with α = 0, the gain increases
with the channel length from 2.4dB to 3.2dB for 32 and
128 taps, respectively. The GFDM system with full rolloff
α = 1 exhibits very poor performance compared to the OFDM
system. On the other hand, this system benefits most from the
iterative detection process, as the gain is several dB for a FER
of 10−2 and increases with the channel length.

This behaviour can be explained with the information
transfer chart in Fig. 3. At the initial iteration, the higher
the interference, the lower the output mutual information and
hence the higher the FER. By performing iterations between
decoder and demapper, the a-priori knowledge in the system
increases, and due to the steeper slope of systems with higher
interference, more gain is achieved with iterative detection.

Nethertheless, with the presented combination of the de-
coder, the OFDM system outperforms both GFDM systems.
The gap between OFDM and GFDM with α = 0 increases
with the channel length, being marginal for 32 taps, but in-
creasing to 0.6dB for a channel length of two subsymbols. This
suggests that the choice of the code and decoding algorithm
is not optimal for the present system, since the potential of
the GFDM system is not fully utilized. Instead, the higher
extrinsic information output of the OFDM demapper at lower
Ia explains the observed behaviour. This observation implies
that the employed channel code and decoding algorithm should
be carefully designed jointly with the waveform, in order to
exploit the full potential of the GFDM system. The design
of such an optimized code is out of scope of this paper and
devoted to future work.

C. Influence of Imperfect Estimation of ~µ

Considering Tab. I, the estimation of the mean ~µ is the
most expensive part of the demapping algorithm. Hence it is
beneficial to analyze the influence of the number of columns
of V on the accuracy of the estimation. Tab. III shows the
according results, where the values are 10 log10 ∆2

µ with

∆2
µ =

(~µ− ~̂µ)H(~µ− ~̂µ)

~µH~µ
, (19)

TABLE III
DEVIATION OF THE ESTIMATED FROM THE EXACT MEAN IN RELATION TO

THE NUMBER OF COLUMNS B IN (18). THE VALUES ARE GIVEN IN dB.

B =
d4MonTe2

x
x = 1

2
1 2 4 8

RC with α = 0 ∆2
µ = −∞ −∞ −∞ −45 −32

RC with α = 1 ∆2
µ = −85 −48 −21 −19 −12

6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11
10−3

10−2

10−1

100

Eb/N0 in dB

F
E
R

x = 1/2 α = 0

x = 1 α = 1

x = 2 LMMSE

x = 4 20 iterations

x = 8

Fig. 5. Simulated FER for different number B of columns of V in (18). x
matches the value in Tab. III.

where ~̂µ and ~µ are from (18) and (17), respectively.

As shown, for α = 0, the estimation is exact for column
counts of V above dMonT e2 and only small deviations appear
for even smaller column counts. This can be explained that
in case of α = 0, G is essentially a block-diagonal matrix
with no ICI. Accordingly X−1 is also block-diagonal with the
same bandwidth. Hence, as long as the column count of V is
above this bandwidth, the estimation is accurate. For α = 1, B
has more influence on the estimation accuracy, ranging from
−80dB for a large column count up to −12dB deviation for
B = 1

2dMonT e2. This behaviour is caused by the truly band-
diagonal structure of G, and hence X−1 is only approximately
band-diagonal. Hence, estimating ~µ is not exact and the more
columns in V are used, the more accurate is the estimation.

Fig. 5 illustrates the effect of imperfect estimation of ~µ
on the achieved FER of the GFDM system. As shown for
α = 0, only for x = 8 a slight degradation is visible for
the converged system with 20 iterations. No difference can be
seen for the pure LMMSE detection without feedback from
the decoder. This suggests, that the number of columns of V
can be reduced even further without degrading the demapping
performance. On the other hand for α = 1, B has a stronger
influence on the system performance. In particular, there is a
vast gap between x = 4 and x = 8, showing that an estimation
error of ∆2

µ = −12dB is not tolerable by the system. However,
for larger B, the performance degradation in particular after 20
iterations is only 0.25dB away from the accurate estimation of
~µ. Again, this observation reveals, that the number of columns
of V can be further reduced to save complexity.



V. CONCLUSION

This paper applies the MMSE-PIC demapping algorithm to
an iterative receiver structure for GFDM. Compared to direct
application of the algorithm from [20], by exploiting the band-
diagonal structure of the system, we provide a significantly
reduced complexity formulation of the demapping process
which scales linearly with the number of subcarriers in the
system. Additionally, applying an algorithm for the estimation
of the diagonal of a matrix without explicitely calculating
this matrix reduces complexity even further, where have pre-
sented the tradeoff between estimation accuracy and algorithm
complexity. Using the standard WiMax LDPC codes, GFDM
performs worse than OFDM. However, the analysis of the in-
formation transfer characteristics of the MMSE-PIC demapper
for GFDM suggests, that a superior performance compared to
OFDM can be achieved in rich multipath environments, given
that the channel decoding counterpart is suitably designed.
This observation motivates the design of such a suitable code,
which is an open topic and devoted to future research.
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