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Abstract—Potentially large storage requirements and long
initial decoding delays are two practical issues related to the
decoding of low-density parity-check (LDPC) convolutional codes
using a continuous pipeline decoder architecture. In this paper,
we propose several reduced complexity decoding strategies to
lessen the storage requirements and the initial decoding delay
without significant loss in performance. We also provide bit error
rate comparisons of LDPC block and LDPC convolutional codes
under equal processor (hardware) complexity and equal decoding
delay assumptions. A partial syndrome encoder realization for
LDPC convolutional codes is also proposed and analyzed. We
construct terminated LDPC convolutional codes that are suitable
for block transmission over a wide range of frame lengths.
Simulation results show that, for terminated LDPC convolutional
codes of sufficiently large memory, performance can be improved
by increasing the density of the syndrome former matrix.

Index Terms—Low-density parity-check codes, convolutional
codes, iterative decoding, message-passing decoding, decoder
implementation.

I. INTRODUCTION

OW-density parity-check (LDPC) block codes were in-

vented four decades ago by Gallager [1]. These codes are
known to achieve excellent bit error rate (BER) performance
on a variety of channels. Analysis and design of these codes
has attracted great interest in the literature, particularly since
their rediscovery in the last decade by Wiberg [2], MacKay
and Neal [3], Kou et al. [4], and many others. Several analyt-
ical tools have been presented [5], [6] to obtain performance
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limits when LDPC codes are decoded by iterative message-
passing algorithms. These tools have been successfully em-
ployed to design codes that achieve near capacity performance
(71, [8].

The convolutional counterpart of LDPC block codes, LDPC
convolutional codes, were first proposed' in [10]. Analogous
to LDPC block codes, LDPC convolutional codes are defined
by sparse parity-check matrices, which allow them to be
decoded using iterative message-passing algorithms. The so-
called pipeline decoder [10], that is typically used to decode
these codes, has a potentially long initial decoding delay and
high storage requirements. The pipeline decoder outputs a
continuous stream of decoded data once this initial decoding
delay has elapsed. Therefore it is essential for delay-sensitive
scenarios that this initial decoding delay be minimized. Both
the delay and storage requirements of the decoder are pro-
portional to the number of iterations performed and to the
convolutional code constraint length. In this paper, we propose
several improvements to the pipeline decoder proposed in
[10] to decrease both the storage requirements and the initial
decoding delay.

The first practical VLSI hardware architecture for LDPC
convolutional decoders was proposed by Bates et al. [11],
and in [12] it was shown that terminated LDPC convolutional
codes are appropriate for packet data transmission in Ethernet
networks. In this paper, we consider several implementation
aspects of LDPC convolutional codes, such as enhanced
code constructions, pipeline and circular decoding architec-
tures, stopping rules for the decoder, an on-demand decoding
schedule, and terminated transmission of LDPC convolutional
codes.

Given their excellent BER performance, it is quite natural
to compare LDPC convolutional codes with corresponding
LDPC block codes. For finite block lengths, a systematic
comparison of these codes has not yet been proposed in the
literature. In this paper, we consider several comparisons of
these codes under certain assumptions, i.e., equal processor
(hardware) complexity and equal decoding delay.

IThe basic concept of LDPC convolutional codes was independently
presented by Tanner in a patent application [9].

0090-6778/08$25.00 © 2008 IEEE
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II. LDPC CONVOLUTIONAL CODES

We start with a brief definition of a rate R = b/c binary
LDPC convolutional code C. (A more detailed description can
be found in [10], [13], [14].) Let

= [11071117-~-711t—1],

Ujo,t—1]

(O INE))

)
where u; = (ulV, u?, . u"),0 < i < tt € ZF, and

ug') € GF(2), be an informatlon sequence. The encoder maps
this sequence into the code sequence

2

v!9),0<i<tteZ ando!) €

Vio,t—1] = [V0>v17 '“7Vt—1] )
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where v; = (v; ", v, ...,
GF(2). We assume that the encoder is systematic and will
therefore use the notation v; = [V£0)7V£1)], where VEO) =u
and vgl) is a parity-check vector of length (¢ — b).
A code sequence Vg o] satisfies the equation
V(0,00) H[g,00) = 0, 3)

where the matrix at the top of this page is a transposed parity
check matrix, also called the syndrome former of the convo-

lutional code C. The submatrices H;(t), i = 0,1,--- ,my, are
binary (¢ — b) x ¢ submatrices given by
B n )
H;(t) = : : “)

D (8) e (t)

They satisfy the following properties:
1) Hi(t) =0, i<0andi>m,, YVt

2) There is a t such that H,, (¢) # 0.
3) Hy(t) # 0 V ¢, has full rank.

We call my the syndrome former memory, and v, = (ms+1)-c¢
is the decoding constraint length. It determines the width of the
nonzero diagonal region of H?o,oo}' Sparsity of the syndrome
former is ensured by demanding that its rows have very low
Hamming weight, i.e., wy(h;) << (mg+1)-¢, i € ZT,
where h; denotes the i-th row of HEOW]. The code is said to
be regular if its syndrome former H[Ttm] has exactly J ones
in every row and K ones in every column starting from the
(ms - ¢ + 1)-th column. The other entries are zeros. We will
refer to a code with these properties as an (ms, J, K)-LDPC
convolutional code. An (my, J, K )-LDPC convolutional code
is called periodic with period T" if H;(t), i € ZT, is periodic,
ie, H;(t) =H;(t+T),V i,t.

A description of the construction of a periodic syndrome
former HTO7Oo from the transposed parity-check matrix of an
LDPC block code is given in [10]. For the LDPC convolutional
codes considered in this paper, we chose an LDPC block code
parity-check matrix randomly and then, using the procedure
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in [10], transformed it to a syndrome former.

III. ENCODING OF LDPC CONVOLUTIONAL CODES

In this section, we consider two realizations for encoding
rate R = b/c, (ms, J, K)-LDPC convolutional codes — a
syndrome former and a partial syndrome former realization.

A. Syndrome Former Realization

Equation (3) can be rewritten as
viH{(t) + v HI () +...+vi_pn H), () =0, t € Z. (5)

Since the submatrices Hg(t), t € Z, have full rank, (5)
can be used to define the code block v;. Given the in-
formation block u = Vgo) and the previous code blocks
Vi_1,Vi—2, "+, Vi_m,, We can calculate parity block vgl) .

When the last ¢ — b linearly independent rows of H{ () are
chosen as the (¢ — b) x (¢ — b) identity matrix, a systematic
encoder can be defined using (5) as follows:

@”_ﬁﬁsz. b, (6)
k) (G—bk k) b,k
LB SEITSIONS 3p S eIl
k=1 i=1 k=1
j=b+1,...,¢,(7
and the parity symbols v, ), j =0b4+1,--- ¢ can be

determined using shift-registers [10]. This syndrome former
encoder realization requires ¢ - mg + b memory units and
the encoding complexity per bit is proportional to K — 1,
independent of the codeword length and the syndrome former
memory m;. On the other hand, a straightforward encoder for
a length N LDPC block code that multiplies the information
sequence by the generator matrix has a complexity per bit that
is proportional to N. Therefore, the special structure of LDPC
convolutional codes gives them a clear advantage compared to
LDPC block codes in terms of encoding complexity.

B. Partial Syndrome Former Realization

Let vig,s—1) be the sequence of code symbols corresponding
to a systematically encoded block of information symbols
upg,;—1). For any t > 0 this sequence satisfies

V[O,tfl]HEOJ—l] =[ 00,11 | Pt |- 8)
Here, 0jy ;1] is a zero vector of length (¢ —b) - ¢ and
Pt = [ Pt,1, Pt.2; --+5 Ptmds )]

where p;; = ( pill), P§22)> . pgz_b) ), i = 1,2, ms.

Vector p; is called the parnal syndrome. By definition, p; is
the state of a partial syndrome former encoder at time t.
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Partial Syndrome Multiplier
(only J — 1 products per shift)

Fig. 1. Block diagram of an R = b/c, (ms, J, K)-LDPC convolutional
code partial syndrome former encoder.

From (8), we calculate p; recursively as a function of p;_;
and v;_; using

Pt,i = {

This partial syndrome former encoder can be implemented
using a shift register that employs (¢ — b) - s memory units
(Figure 1). The contents of the shift register at any time ¢ is
Pt-

Given the encoder state at time ¢, we can generate the parity
bits at time ¢ by using

Pt—1,i+1 + vi1 HL(t+i — 1),
thlHZnS(t +ms — 1),

i=1,2,...,ms— 1,
7= M.

(10)

vi?, viVIHG (1) = pes. (11)
Let us express the matrix Hy(t) as
Hy(t) = [H" (1), H (1)) (12)

where Héo) (t) is a (¢—b) x b matrix and Hgl) (t)isa (c—b)x
(¢ — b) matrix having full rank. Then, from (11) we obtain

vOEY @ + vV EP O = pra. (13)

In the case when H(()l)(t) is an identity matrix, we have

vV =vO P )] + pei (14)

Equation (14) defines the parity subblock in terms of the
partial syndrome p; ; and the information sequence vio) = uy.

This partial syndrome former encoder realization needs only
(¢—b)-ms memory units, less than that of the syndrome former
realization proposed in [10] and outlined in the previous
subsection, but the encoding (computational) complexity is
the same. However, the partial syndrome former realization
is more convenient because, as we will see in section IV, it
allows us to encode terminated LDPC convolutional codes in
a simple way.

IV. TERMINATION OF LDPC CONVOLUTIONAL CODES

LDPC convolutional codes are very efficient for the trans-
mission of streaming data since they allow continuous encod-
ing/decoding. However, in some applications, it is preferable
to have the data encoded in frames of pre-determined size in

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 56, NO. 7, JULY 2008

order to maintain compatibility with some standard format.
We now consider termination of LDPC convolutional codes
in this context.

The information sequences must be terminated with a tail of
symbols to force the encoder to the zero state at the end of the
encoding process. For conventional polynomial convolutional
encoders, the terminating tail consists of a sequence of zeros.
For LDPC convolutional code encoders, the tail is, generally
speaking, non-zero and depends on the encoded information
bits. Therefore, we need to solve a system of linear equations.
In this section we propose a convenient way to calculate the
tail bits using the partial syndrome encoder.

Consider the case when the sequence upg ;1) has been
encoded and we must find the tail v(7, 14 ,_1j of c7 symbols,
corresponding to an input sequence Uz, 111}, to bring the
encoder to the zero state, i.e., the partial syndrome pr -1
should be zero. This means that the code sequence must satisfy
the condition

V[O,L+7'71]H'[1~07L+7-71] = O[O,L+‘r+7nsfl]‘ (15)
Equation (15) can be split into two conditions
V[O,L—l]H[To,L—l] [0p0,2-1] | PL] (16)

[pL | O[O,T—ms—l]]' (17

The first condition is equivalent to (8) and the second condition
defines a linear system of (¢ — b) - 7 equations for finding the
tail VIL,L+7-1]-

Note that some of the equations in (17) may be linearly de-
pendent and therefore redundant. Let us suppose that we have
excluded from matrix H}L’ Ltr—1] all dependent columns,
obtaining a ¢7 x ¢ matrix F (L), where ¢ < min[(ms+7)(c—
b), ct]. Now we can rewrite (17) as

V[L7L+T—1]HF[rL7L+T—1] =

vir,+r—1F(L) = [ pL | 0], (18)

where p7 is the partial syndrome vector p; with omitted
redundant components and 0 is a zero vector with length such
that the length of [ p3 | 0] is 1. The rank of F(L) is full, it
has a right inverse F~1(L), and we can rewrite (18) as

ViL,L4r—1 =[P} | O JF ' (L).

Equation (19) defines the termination tail v(z, r4,_1j. Using
this result, it is straightforward to express the subblocks
of the tail as a linear combination of the partial syndrome
components

(19)

vi=Y prifisl), L<t<L+7r-1,  (20)
i=1

where the f; ;(L) are (¢c—b) X ¢ matrices, given by the inverse

F~!(L), that are calculated in advance from HEL Lr—1]

and pr,; are the contents of the shift register of the partial

syndrome encoder at time ¢ = L (Figure 1).

Equation (20) shows that for the tail calculation, it is
sufficient to save the partial syndrome former components
Pr., % =1,...,ms, attime L and to use them in the calculation
of the tail. If the LDPC convolutional code is periodic with
period T and if the information block length L is chosen to
be a multiple of T, i.e., L = nT,n € Z7, then £, (L) is
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independent of L and the same terminating circuitry can be
used for different block lengths.

For the simulations of LDPC convolutional codes reported
in Section VIII, we constructed the syndrome former matrices

randomly. We selected only codes having tail lengths 7 =

2(ms + 1). Codes requiring longer tails were rejected. It is

interesting to note that we only had to reject about half of all

randomly generated codes.

From a theoretical point of view, it is important to study the
asymptotic behavior of the tail length 7, when the syndrome
former memory goes to infinity. In [15] and [16], an ensemble
Ci(ms, J,2J) of (ms,J,2J)-LDPC convolutional codes with
syndrome formers composed of random permutation matrices
was considered. The following theorem confirms our empirical
observations that rate R = 1/2, (ms, J,2.J)-LDPC convolu-
tional codes can always be chosen such that the tail length 7
does not exceed 2 - (mg + 1).

Theorem 4.1: If mg — oo, almost all codes in
Ci(ms, J,2J) can be terminated with a tail of length 7 =
2+ (mg + 1) (proof given in [15]).

V. DECODING OF LDPC CONVOLUTIONAL CODES

There are several ways to decode an LDPC convolutional
code. In one approach, we terminate the encoded sequence to
form a frame of pre-determined length. The received word is
then decoded by a message-passing algorithm, such as belief-
propagation [1], similar to the decoding of LDPC block codes.

Semi-infinite (non-terminated) LDPC convolutional codes
can also be iteratively decoded using a message-passing al-
gorithm. Although the corresponding Tanner graph has an
infinite number of nodes, the distance between two variable
nodes that are connected to the same check node is limited
by the memory of the code. This allows continuous decoding
with a decoder that operates on a finite window sliding
along the received sequence, similar to a Viterbi decoder
with finite path memory [13]. The decoding of two variable
nodes that are at least (ms + 1) time units apart can be
performed independently, since the corresponding bits cannot
participate in the same parity-check equation. This allows the
parallelization of the I iterations by employing I independent
identical processors working on different regions of the Tanner
graph simultaneously. A pipeline decoder that is based on this
idea was introduced by Jiménez Feltstrom and Zigangirov in
[10]. The operation of this decoder on the Tanner graph for a
simple time-invariant rate R = 1/3 LDPC convolutional code
with mg = 2 is shown in Figure 2.

When the first ¢ received symbols of the transmitted se-
quence enter the pipeline decoder, it takes I - (mg + 1) time
units for this c-tuple to reach the output of the decoder
where the decision on these symbols is made. Once this
initial decoding delay of the pipeline decoder has elapsed,
the decoder produces a continuous output stream, i.e., at each
time unit, ¢ newly received values enter the decoder and c
decoded bits leave it. The I processors perform the I decoding
iterations simultaneously. At each time unit, the ¢-th processor
begins by activating the first column of (¢ — b) check nodes
in its operating region and then proceeds to activate the last
column of ¢ variable nodes that are about to leave the operating
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(size = 1 (me41) )

@ variable node

O check node

Fig. 2. Tanner graph of R=1/3 LDPC convolutional code and illustration of
pipeline decoding.

region. A check node activation is the step where the check
node collects all the incoming messages from its neighboring
variable nodes, calculates the outgoing messages, and sends
the new messages to each neighboring variable node. Corre-
spondingly, during a variable node activation, all the incoming
messages to a variable node from the neighboring check nodes
are collected and the new outgoing messages are calculated.
Then the new messages are sent to each neighboring check
node.

VI. IMPROVEMENTS TO THE PIPELINE DECODER

To insure the independence of consecutive decoding itera-
tions, the operating regions of neighboring processors do not
overlap. As noted above, this results in a fairly long initial
decoding delay of I - (mgs + 1) time units. Also, since each
variable node must store a channel value and one storage
element is needed for each edge in the Tanner graph, a total
memory of (J+1)-1-(ms+1)-c=(J+1)-1I-wvs storage
elements is required. Both quantities are linear functions of the
number of iterations [ and the processor separation (ms + 1).
In this section, we present several reduced complexity de-
coding strategies to decrease the initial decoding delay and
the memory requirements without significantly reducing the
performance of the decoder.

These strategies can also be used with a circular memory
topology, similar to the one used in [17], which is more
suitable for decoding terminated LDPC convolutional codes.
This circular memory topology is used in the simulations
of terminated LDPC convolutional codes reported in Section
VIIL?

A. A Stopping Rule for the Pipeline Decoder

For LDPC block codes, the decoded sequence is a valid
codeword if and only if all of the parity-check equations are
satisfied after some number of iterations, or, equivalently, all
components of the syndrome vector are zero. When using
belief-propagation decoding, it almost never occurs that the
decoder converges to a different codeword after further itera-
tions. This suggests stopping decoding once the decoder output
converges to a codeword. This is a well-known tool that saves
both time and power consumption in the decoding process.

However, this stopping rule cannot be used in the continu-
ous pipeline convolutional decoder because of the finite size

2 All simulation results presented in this paper assume the use of the sum-
product algorithm.
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operating window, semi-infinite size parity-check matrix, and
the undetermined length of the input sequence. For such an
LDPC convolutional code decoder, it would be cumbersome
to check whether all the parity-check equations are satisfied
at the completion of decoding. In this section, we present a
way of allowing the individual processors to determine when
to stop and restart.

Since decoding is performed over a finite size window,
instead of trying to determine whether the entire decoded
sequence is a codeword or not, one can consider segments
of the decoded sequence and determine whether they match a
segment of a valid codeword, i.e., whether the corresponding
components of the syndrome vector are zero. This control of
the processors is realized by using individual counters for each
processor. If the c-tuple that enters the operating region of
the -th processor is observed to satisfy the first column of
check nodes in this operating region, i.e., the corresponding
component of the syndrome vector is zero, the i-th counter is
incremented by one. If the counter value exceeds a stopping
parameter P, the processor enters the sleep mode and stops
processing. (The stopping condition is still checked in this
mode.) When a c-tuple that does not satisfy the first column of
check nodes enters the decoder, the counter is reset to zero and
the processor resumes operation. The complexity overhead the
stopping rule introduces is quite small compared to the total
complexity of the tasks the processor performs at each time
unit.

Intuitively, the stopping parameter P can be chosen equal to
the syndrome-former memory ms. This insures that all the bits
entering a decoding region in succeeding time intervals will
lie on a valid codeword until a non-zero syndrome component
is observed. Simulation results for the BER performance of
the proposed stopping rule for non-terminated LDPC convo-
lutional codes with J = 3, K = 6, P = ms, and different
syndrome former memories over an AWGN channel with
signal-to-noise ratio (SNR) E}, /Ny per bit have been obtained.
Compared to simulation results for the conventional pipeline
decoder, no performance degradation is observed.

The stopping rule performs very well for various memory
lengths. For the (512,3,6) code and a maximum allowable
number of iterations I = 100, the average number of iterations
1,, performed per bit at 1.00dB SNR is 64, and this value
drops to 16 at 1.25dB. Although the stopping decoder does
not reduce the required decoder memory, depending on the
quality of the received sequence and the value of my, it
performs many fewer iterations than the non-stopping decoder
without any loss in BER performance. The realized savings
in power consumption can be translated into decoding time if,
instead of I different processors, a single processor performs
the iterations one-by-one by hopping to successive operating
regions.® It is also possible to use the stopping rule with
P < ms. However, if P is too small, the BER will increase.

B. On-Demand Variable Node Activation Schedule
For decoding LDPC block codes, the standard message-
passing schedule calls for, at each iteration, all the variable

3This would require clocking the decoder according to the average number
of iterations performed and employing a buffer at the channel output.
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Fig. 3. Bit error rate performances of on-demand variable node scheduling

and the compact decoder.

nodes, and then all the check nodes, to be activated. This
scheduling corresponds to the message-passing schedule of
the pipeline decoder introduced in [10], in which, within
a processing region, the ¢ — b check node activations are
performed just after a set of ¢ variable nodes enters the region,
and the c variable node activations are performed just before a
set of ¢ variable nodes leaves the region. However, using this
scheduling, the decoder does not make use of the most recent
information at the variable nodes. The incoming information to
a variable node is included in its outgoing messages only after
an iteration is completed. In this subsection, we propose an
on-demand variable node activation schedule for the pipeline
decoder.

According to the proposed schedule, the activation order of
the check nodes does not change, but instead of activating the
variable nodes that are about to leave an operating region, we
activate a variable node whenever its message is required by
an active check node. Using this approach, the check nodes are
able to access the most recent information available from the
variable nodes. Also, the messages generated during a check
node activation are immediately available for further check
node activations within the same iteration. This on-demand
scheduling allows the effects of message passing to flow faster
through the Tanner graph.

BER performance simulation results are presented in Figure
3 for codes of various memory lengths. These results show
that allowing some messages to flow faster through the Tan-
ner graph improves performance, as long as these messages
have high enough reliabilities. The (128,3,6) code results
indicate that weaker codes may not take full advantage of
this scheme, whereas the higher memory order codes exhibit
a 0.05 — 0.10dB gain at high SNR.

From the computational point of view, the standard and
on-demand variable node activation schedules have exactly
the same complexity, since the number of computations is
identical for both schemes. The check node activation com-
plexity is also clearly the same for the two schemes. On the
one hand, on-demand scheduling activates each variable node
J times per iteration, which is the number of neighboring
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check nodes that require new information, whereas standard
scheduling activates each variable node just once per iteration.
But, in the standard schedule, once a variable node is activated,
all J outgoing messages are calculated, whereas the variable
node activation in on-demand scheduling corresponds only to
a single outgoing message calculation from the variable node
to the check node that has triggered the activation.

Compared to standard scheduling, the on-demand variable
node activation schedule achieves a lower BER for a fixed
number of iterations. This advantage can be translated into
reduced delay and storage requirements by noting that the
on-demand schedule requires fewer iterations to achieve a
given fixed BER, thus reducing the initial decoding delay and
requiring fewer processors and memory units in the decoder
implementation.

C. Compact Pipeline Decoder Architecture

The requirement that the processing regions of the pipeline
decoder cannot overlap follows directly from the independence
of the operations performed in the standard schedule. But,
once on-demand scheduling is employed, we can let neigh-
boring operating regions overlap to decrease the total memory
requirements of the decoder. As a result of the overlap, the
information generated in the ¢-th processor’s region will be
immediately available to the (i + 1)-th processor. These two
processors will both have access to the information stored in
the overlapping region. In such an arrangement, the BER s ex-
pected to increase, since the bits that belong to the overlapping
region are not ready for the next iteration. Therefore, there
will be a trade-off between the distance between neighboring
processors and BER performance. We introduce the overlap by
denoting the processor separation (which is equal to (ms+ 1)
in the standard decoder) as a variable S. This implementation
is called the reduced-memory (compact) decoder.

The simulation results given in Figure 3 show that, as
long as S is chosen to satisfy S > mg/2, the compact
decoder causes negligible performance loss while reducing
memory requirements and initial decoding delay by almost
a factor of two. One reason for the performance loss when
S < ms/2 is that even the non-neighboring (i — 1)-th and
(i + 1)-th regions overlap, i.e., messages that haven’t even
been processed completely by the (i — 1)-th processor are
used in the (i + 1)-th iteration.

Although the computational complexity of the proposed de-
coder is the same as the standard one, the storage requirement
is much less. The total number of memory units required for
the compact decoder is just (I-S+(ms+1—295))-c-(J+1).(The
additional memory units corresponding to the (ms + 1 — .5)
additional time units are required by the last processor to
successfully decode the c bits leaving the decoder. This
amount is usually very small compared to [ - S.)

VII. IMPLEMENTATION COMPLEXITY COMPARISONS
wITH LDPC BLOCK CODES

In this section, we compare several aspects of decoding
LDPC convolutional codes to LDPC block codes.
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A. Computational Complexity

Let Cipeck (Cyar) denote the number of computations re-
quired for a check (variable) node update for a check (variable)
node of degree K (.J). Regardless of the code structure, Cepeck
and Cy,, only depend on the values J and K.

For a rate R = b/¢, (my, J, K)-LDPC convolutional code
decoded using a pipeline decoder with [ iterations/processors,
at every time instant each processor activates ¢ — b check
nodes and c variable nodes. The computational complexity
per decoded bit is therefore given by

leiotnv ((C - b) ' Ccheck +c- Cvar) : I/C
= ((1 - R) . Ccheck: + Cvar) : I7
which is independent of the constraint length vs.

Similarly, the decoding complexity for an (N, J, K)-LDPC
block code is calculated as

21

J
Chii™* = (N % Coneck + N - Cuar) - I/N (22)
J
= 7~ " Uchec var) 1
(K Ceheck + Cuar)

= ((1 - R) : Ccheck + Cvar) . I7

which is again independent of the code length N. Thus, there
is no difference between block and convolutional LDPC codes
with respect to computational complexity.

B. Processor (Hardware) Complexity

The pipeline decoder implementation of an LDPC convolu-
tional code operates on I - vy symbols. However, as described
in the previous sections, decoding can be carried out by using
I identical independent parallel processors each capable of
handling only v symbols. Hence, it is sufficient to design
the processor hardware for v symbols. For an LDPC block
code of length N, the processor must be capable of handling
all N symbols. Therefore, for the same processor complexity,
the block length of an LDPC block code must be chosen to
satisfy N = v;.

C. Storage Requirements

For the pipeline decoder, we need a storage element for
each edge in the corresponding Tanner graph. Each variable
node also needs a storage element for the channel value. Thus
a total of I - (J + 1) - vs storage elements are required for I
iterations of decoding. Similarly, we need N - (J + 1) storage
elements for the decoding of an LDPC block code of length
N. Thus, for the same storage requirements, an LDPC block
code must satisfy N =1 - v.

D. Decoding Delay

Let T denote the time between the arrival of successive
symbols, i.e., the symbol rate is 1/T,. Then the maximum
time from the arrival of a symbol until it is decoded is given
by

A ==+ (me+1)-c-I)- T, (23)

The first term (¢ — 1) in (23) represents the time between
the arrival of the first and last of the ¢ encoded symbols
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Fig. 4. Performance comparison of LDPC block and convolutional codes.

output by a rate R = b/c convolutional encoder in each
encoding interval. The dominant second term (ms+1)-c- I is
the time each symbol spends in the decoding window. Since
c symbols are loaded into the decoder simultaneously, the
pipeline decoder also requires a buffer to hold the first (c—1)
symbols.

With LDPC block codes, data is typically transmitted in
a sequence of blocks. Depending on the data rate and the
processor speed, several scenarios are possible. We consider
the best case for block codes, i.e., each block is decoded by
the time the first bit of the next block arrives. This results in
a maximum input-output delay of Ablck = N . T, 4 Thus,
for equal decoding delays, the block length must satisfy N =
(¢ — 1)+ vs - I, assuming the least possible delay for block
codes.

In Figure 4, we plot the performance of a rate R = 1/2,
(2048,3,6)-LDPC convolutional code with I = 50 iterations
on an AWGN channel. Also shown is the performance of two
J =3, K = 6 LDPC block codes with a maximum number
of 50 iterations. The block lengths were chosen so that in
one case the decoders have the same processor complexity,
i.e., N = v, and in the other case the same decoding delay
(assuming the least possible delay for the block codes), i.e.,
N = (¢ —1)+ v - I. For the same processor complexity, the
convolutional code outperforms the block code by about 0.6
dB at a bit error rate of 1075, For the same decoding delay, the
convolutional and block code performance is nearly identical.
Note that in the case of equal decoding delay, the memory
requirements for the block code are also almost the same as
for the convolutional code.

Typically, the data rates and decoding speeds are such that
some buffering is required to decode block codes. There are
several different decoding architectures possible in this case.
However, the delay in all of these scenarios is at least as
much as in the scenario we have considered earlier, so that

4Note that the block decoder does not need any buffering under such
conditions. Let Tge. (NN, I') denote the time required to perform I iterations
of message-passing decoding on a block of N symbols. Thus we require
Taec(N,I) < Ts, i.e., this scenario requires extremely fast processors or
very low data rates. By contrast, Ty (¢, = 1) < ¢ - Ts for convolutional
codes.
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Fig. 5. Simulation results for terminated (513, 3, 6) and (1025, 3, 6) - LDPC
convolutional codes with rates R = 0.4545 and 0.4838. For comparison, the
performance of the unterminated codes of rate R = 0.5 is also shown.

the convolutional code would outperform the block code in
each of these cases for the same decoding delay.

An LDPC block code can also be decoded by a decoder with
an architecture similar to the convolutional code, by treating
it as a convolutional code with memory zero. Such a decoder
would consist of a buffer to store N symbols along with I
processors, each performing one iteration of message-passing.
In this case, Ak = (N —1+1-N) Ty and Tyec(N, I =
1) < N - Ts. (The block length N is analogous to ¢ in this
case.) This decoder structure for block codes is appropriate
when transmitting a large amount of data (>> N) at high
data rates.

VIII. PERFORMANCE OF TERMINATED LDPC
CONVOLUTIONAL CODES

In our analysis of the performance of terminated LDPC
convolutional codes on an AWGN channel, we are interested
in the effects of the following factors: syndrome former
memory, frame length, relative density of the syndrome former
matrix, and code rate.

We have studied the dependence of the BER on SNR
for terminated (ms, J, K) codes with b = 1 and ¢ = 2
when the syndrome former memory varies from ms = 513
to 4093. Syndrome former matrices of density J = 3,4,
and 5 and K = 2J were investigated. Frame lengths of
N, = 20(ms — 1), 40(ms — 1), and 60(ms — 1) resulted in
rates (after termination) of R = 0.4545, 0.4762, and 0.4838,
respectively. The maximum number of iterations was 200, and
a stopping rule was employed to reduce the average number
of iterations.

In Figure 5, we present terminated LDPC convolutional
code simulation results for ms = 513 and 1025, J = 3,
K =6, and frame lengths Ny = 20(ms — 1) and 60(ms — 1).
For comparison purposes, simulation results for unterminated
transmission are also provided. We see that, for each value
of mg, the code performance stays within a range of ap-
proximately 0.2-0.3dB for the different values of N;. This
ensures that a single LDPC convolutional code can be used
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TABLE I
COMPUTATIONAL AND MEMORY REQUIREMENTS OF THE PROPOSED DECODERS.

Implementation Type Memory Requirement

Computational Complexity

Standard
On-demand
On-demand/compact
On-demand/stopping

I-(J+1)-(ms+1)-¢c
“(ms+1)-c

~ i~ ~
P
.
+
—
A RN
wn

e+ (J+1)-(ms+1-S5) ¢

I'(cfb)'cchcck‘FI'C'CUaT
I'(cfb)'cchcck"’['c'cvar
I'(cfb)'cchcck‘FI'C'CUaT
Iav : (C_b) 'Ccheck+lav 'C'C'var+I'Cst0p

T
—t (4093,3,6),N,=81840
o (4093,4,8),N,=81840
& (4093,5,10),N,=81840

T T
— (1027,3,6), N;=20520
& (1027,4,8),N,=20520
- (1027,5,10),N,=20520

BER
BER

- (4093,3,6), N,=163680
o (4093,4,8),N,=163680
& (4093,5,10),N,=163680

% (1027,3,6),N,=41040
o (1027,4,8),N,=41040
& (1027,5,10),N,=41040

BER
BER
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Fig. 6. Simulation results for rate R = 0.4545 terminated (ms, J, K')-LDPC
convolutional codes with frame length N; = 20(ms — 1).

to achieve very good BER performance over a wide range
of frame lengths. This is a property of LDPC convolutional
codes that is not shared by their block code counterparts.
As a result, in applications that require different frame sizes,
LDPC block codes can be inefficient, since a new code must
be constructed each time a change in frame size is required.
LDPC convolutional codes, on the other hand, are much more
robust to changes in frame size.

During the simulations, we observed that the average num-
ber of iterations for decoding the (513,3,6) and (1025, 3, 6)
codes depends only slightly on the frame length N, and
decreases with increasing syndrome former memory mg. At
E,/Ny = 1.0dB,1.4dB, and 1.8dB, the average number of
iterations was approximately 160, 40, and 20, respectively.

In Figures 6 and 7, we present simulation results for
terminated (ms, J,2J) codes with b = 1, ¢ = 2, mg = 1027
and 4093, different syndrome former densities J = 3, 4, and
5, and frame lengths Ny = 20(ms — 1) and 40(ms — 1).
The results show that the (1027, 3,6) and (1027,4, 8) codes
perform almost identically, whereas the (1027,5,10) code
performs much worse. However, with memory ms = 4093, the
(J,K) = (5,10) codes have the best performance, followed
by the (4, 8) and (3, 6) codes. This improved performance with
increasing J when my is large is consistent with the results of
[18], where the AWGN channel iterative decoding thresholds
of an ensemble of (ms, 3,6), (ms,4,8), and (ms, 5,10) codes
have been calculated as 0.46 dB, 0.26 dB, and 0.21 dB,

0.98 1
Eb/N0

0.96

1.02

Fig. 7. Simulation results for rate R = 0.4762 terminated (ms, J, K')-LDPC
convolutional codes with frame length N; = 40(ms — 1).

respectively. Interestingly, this result is in contrast to the
threshold behavior of regular LDPC block codes, where the
minimum threshold for rate R = 1/2 codes is achieved by
(3,6) codes.

IX. CONCLUSIONS

In this paper, we have discussed several implementation
aspects of decoding LDPC convolutional codes, such as sys-
tematic encoding, code termination, and a sliding window
decoder operating on the infinite size Tanner graph. Several
improvements to the original pipeline decoder architecture
were presented. Specifically, an on-demand variable node acti-
vation technique was shown to improve performance, whereas
a stopping rule and compact decoder architecture decrease
either storage re