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Abstract—We present a soft-output MIMO detection algorithm
that achieves near max-log optimal error rate performance with
low- and fixed- computational complexity. The proposed SOCA
algorithm combines a smart-ordered QR decomposition with
smart candidate adding and a parallel layer-by-layer search
of the detection tree. In contrast to prior algorithms that
use smart candidate adding, the proposed algorithm has fixed
computational complexity, and it never visits a node more than

once. Results indicate that the SOCA algorithm has an attractive
performance-complexity profile for both fast and slow fading 4×4

and 8× 8 MIMO channels with QAM inputs.

Index Terms—Soft-Output MIMO Detection, Parallel Smart
Candidate Adding, List Detection, Smart-Ordered QR, Breadth-
first, SOCA, Tree Search.

I. INTRODUCTION

THE use of multiple antennas at the transmitter and the

receiver leads to a multiple-input multiple-output (MIMO)

channel that can significantly increase the data rate and the

reliability of a wireless communication link, without the

need for increased transmit power or additional bandwidth.

Like any communication system, a MIMO system relies on

error-control coding to ensure reliable communication in the

presence of noise. While in principle a receiver could jointly

account for the mutual interference introduced by the MIMO

channel and the constraints introduced by the channel code, a

practical receiver will account for them separately using first

a MIMO detector, which effectively ignores the presence of

the code by assuming that the code bits are independent and

uniformly distributed, and then an error-control decoder. With

this assumption, the best the detector can do is to compute

the a posteriori probability (APP) for each of the coded bits,

which is the conditional probability that each coded bit is

1 (or 0) given the observation of the channel output. The

problem of soft-output detection, which aims to compute or

approximate these APPs, is important for two fundamental
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reasons first, the performance of the error-control decoder

depends critically on how well its inputs approximate the true

APPs, and second, the high complexity of soft-output detection

can easily dominate the other receiver tasks such as error-

control decoding. Specifically, the complexity of exact APP

computation grows exponentially with the spectral efficiency,

making it prohibitively complex even for MIMO systems with

moderately large antenna arrays and modulation alphabets.

Soft-output MIMO detectors have been proposed based

on a variety of principles, including Monte Carlo methods

[4], semidefinite programming [5], [6], interference cance-

lation [7], sphere projection [8] and tree search [9], [10].

Of particular interest is the smart candidate adding (SCA)

approach of [11]–[13], where a maximum a posteriori (MAP)

estimate (or an approximation thereof) is supplemented by

directed searches for counterhypotheses to this estimate. In

[14] an improvement over the SCA approaches of [11]–[13]

was proposed that finds its list using a single pass through

the detection tree, rather than using multiple searches. A

low complexity SCA approach, motivated by the algorithm

in [14], was proposed in [15]. However, [11]–[15] suffer

from the problem of variable computational complexity and

a potentially high worst-case complexity. Recently, a fixed

complexity soft-output detection algorithm was proposed in

[16].

Our contribution is a low- and fixed- computational

complexity tree-based solution to the soft-output MIMO de-

tection problem that never visits nodes in the detection tree

more than once. We call our solution the smart ordering and

candidate adding (SOCA) algorithm. The SOCA algorithm

sacrifices max-log optimality for low and fixed computa-

tional complexity. The SOCA algorithm achieves a desirable

performance-complexity profile by combining an intelligent

ordering algorithm with SCA techniques and a parallel search

of the detection tree.

We now briefly provide the necessary notation. Matrices are

set in boldface capital letters and vectors in boldface lowercase

letters. We denote the entry in the ith row and vth column

of the matrix R as Riv , the vth column of R as Rv and

the ith entry of the vector b = [b1 b2 . . . bN ]T as bi. The

superscripts T and ∗ stand for the transpose and conjugate

transposition, respectively. IN and 0N denote the N × N
identity and zero matrices, respectively. Finally, |A| denotes

the cardinality of the set A.
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The remainder of this paper is organized as follows: after

discussing the employed system model in section II, section

III describes the problem of soft-output MIMO detection. This

is followed by a presentation of the proposed fixed-complexity

SOCA detection algorithm in section IV. Results are presented

in section V and conclusions are drawn in section VI.

II. SYSTEM MODEL

We assume the transmitter shown in Fig. 1(a) [9]. The input

is a vector u of i.i.d. uniform information bits that is encoded

and interleaved. The coded bit stream is partitioned into blocks

c of ωNt bits. Each block is mapped onto a vector a whose

Nt component symbols are taken from a QAM alphabet A
of size q = |A| = 2ω and energy E

(

|ai|2
)

= E/Nt, where

ω is the number of bits per symbol. We define Z = ANt as

the set of all possible symbol vectors a ∈ Z , one for each

binary vector c ∈ {±1}ωNt, as determined by the mapping

from coded bits to transmitted symbols.

The vector of symbols a is transmitted through an Nr × Nt

MIMO channel whose equivalent complex baseband model is:

r = Ha + n, (1)

where r ∈ C
[Nr×1] is the received signal vector, n ∈ C

[Nr×1]

is additive noise, and H ∈ C[Nr×Nt] is the channel matrix.

We are thus assuming a single-carrier narrowband flat-fading

channel. We assume additive white Gaussian noise (AWGN),

so that the components of n are zero-mean, circularly sym-

metric, i.i.d. complex Gaussian random variables with variance

N0, satisfying E[nn∗] = N0INr
. The entry in the ith row and

vth column of H represents the complex channel gain between

transmit antenna v and receive antenna i. We assume Rayleigh

fading, typical of non-line-of-sight communication systems,

so that the entries of H are i.i.d. complex Gaussian random

variables of variance 1. The signal-to-noise ratio (SNR) at any

receive antenna is SNR = E/N0. We assume Nr ≥ Nt and

that the receiver knows the channel perfectly.

In Fig. 1(b) we show a MIMO receiver consisting of a

MIMO detector (this paper’s focus), a deinterleaver, and an

error-control decoder. While an iterative receiver based on

the turbo principle [17] can improve performance, we limit

our discussion to a non-iterative system with no feedback

from the decoder to the detector. This limitation simplifies

our presentation while still retaining the essential features of

the problem.

III. PROBLEM STATEMENT

The aim of a soft-output detector is to calculate or approx-

imate the a posteriori probability (APP) for each of the code

bits cj in a given signaling interval, where j ∈ {1, . . . ωNt}
is the bit index. This probability is conveniently represented

by the so-called a posteriori log-likelihood ratio (LLR):

L(cj|r) := ln
Pr[cj = +1|r]
Pr[cj = −1|r] . (2)

The sign of L(cj |r) is the maximum a posteriori (MAP) esti-

mate for cj , and the magnitude represents the reliability of the

estimate. Larger magnitudes correspond to higher reliability,

and smaller magnitudes indicate low reliability.

After a series of manipulations that exploit (a) the applica-

tion of Bayes’ rule, (b) our assumption of no a priori infor-

mation, (c) our assumption of AWGN and (d) the application

of the max-log approximation, (2) reduces to [9]:

L(cj|r) ≈ min
â∈Z−1

j

‖r− Hâ‖2

N0
− min

â∈Z+1

j

‖r − Hâ‖2

N0
, (3)

where Z±1
j denotes a partitioning of Z depending on whether

the jth bit label is 1 or −1, namely:

Z+1
j = {a(c) : cj = +1} ,

Z−1
j = {a(c) : cj = −1} . (4)

Although at a glance it might appear from (3) that the

receiver would need to perform a pair of optimizations for each

of the ωNt bits of interest, the MAP solution will obviously

always be one of each pair. The other of each pair is called

its counterhypothesis. So to compute (3) exactly (i.e. max-log

optimally) for each of the ωNt bits, it is sufficient to find the

MAP solution once, and then, for each of the ωNt bits, to

negate the bit of interest and solve a constrained optimization

problem to find the optimal counterhypothesis.

An exact solution to (3) need only consider a list containing

the MAP candidate along with at most ωNt counterhypothe-

ses1. List detection is the process of finding a list of candidates

L ⊆ Z . From this list, (3) is approximated as:

L(cj |r) ≈ min
â∈L∩Z−1

j

‖r− Hâ‖2

N0
− min

â∈L∩Z+1

j

‖r− Hâ‖2

N0
. (5)

The only difference between (3) and (5) is the insertion of the

list L, whose size is typically much less than that of |Z|. The

list size ℓ = |L| plays a critical roll in the overall complexity

and performance.

The problem of soft-output MIMO detection can thus be

phrased as the search for the counterhypothesis list. The

contribution in this paper is a list detection algorithm that

closely approximate the max-log optimal counterhypothesis

list with low and fixed computational complexity.

IV. SOCA ALGORITHM

Our solution to the soft-output MIMO detection problem

is called the smart ordering and candidate adding algorithm.

Two stages comprise the SOCA algorithm, a preprocessing

stage and a core processing stage. The preprocessing stage is

used to determine the mapping between layers in the detection

tree and the transmitted vector of information symbols. The

core processing finds the list L, the output of the SOCA

algorithm. Because the preprocessing can be considered a

performance enhancement, we begin by describing the core

processing.

A. SOCA Core Processing

The SOCA algorithm finds L using a standard detection

tree. After a QR-decomposition of the channel matrix, H =

1A single vector may serve as the counterhypothesis for multiple bits.
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Fig. 1: System model with (a) MIMO transmitter and (b) MIMO receiver.

QR, the squared Euclidean distance for a candidate â is:

J(â) = ‖r− Hâ‖2 (6)

= ‖y − Râ‖2 (7)

=

Nt
∑

i=1

|yi −
i

∑

v=1

Riv âv|2, (8)

where R is an Nt × Nt lower triangular matrix, Q is an

orthogonal matrix and y = Q∗r. The cost function (8) can

be interpreted as the sum of Nt branch metrics, one for each

branch in a path from the root to a leaf node, where the metric

for a branch in the i-th stage of the detection tree is:

∣

∣

∣

∣

∣

yi −
i

∑

v=1

Rivav

∣

∣

∣

∣

∣

2

. (9)

The cost of a node is defined as the sum of the branch metrics

in the path from the root to the node.

From the root node in the tree at layer 0 there are q
children, one for each value of a1. From each child node (now

parent nodes) are q children, one for each a2. This continues

until there are qNT leaf nodes at layer Nt. There is a one-

to-one correspondence between a leaf node and a particular

a = [a1 a2 . . . aNt
]T . The detection process can hence be

interpreted as a search for leaf nodes in a tree, corresponding

to elements of a list L.

The foundation of the SOCA algorithm is a simple breadth-

first strategy for searching the tree that is closely related to the

M algorithm [18]. Like the M algorithm, the SOCA algorithm

moves through the tree one layer at a time, discarding all but a

subset of “surviving” nodes from a given layer before moving

to the next. One minor difference is how many surviving nodes

are retained at each layer; rather than keeping this fixed, the

SOCA algorithm allows for the possibility that this number mi

may depend on the layer index i. Another minor difference is

how many children from each surviving node are extended;

rather than keeping this fixed, the SOCA algorithm allows for

the possibility that this number bi may also depend on the layer

index i. (Similar variations of the M algorithm have appeared

in [3], [19].)

The SOCA algorithm builds upon its breadth-first founda-

tion by inserting a new step. Before pruning away all but

the mi best surviving nodes from a current set of candidate

nodes at layer i, the SOCA algorithm identifies the candidate

node with the best metric as the partial MAP (PMAP) node.

Once identified, the SOCA algorithm adds new nodes to the

candidate set so that each of the ω bits corresponding to

the current symbol ai has a counterhypothesis. Specifically,

if ĉPMAP denotes the ωi-bit pattern corresponding to the node

with the best metric, with the last ω of these bits corresponding

to ai, then the SOCA algorithm adds the ω sibling nodes of

the partial-MAP node by simply flipping each of the last ω
bits of ĉPMAP in turn. This bit flipping strategy was chosen

because of its low complexity, despite the facts that (1) the

counterhypotheses so generated may not be the ones having

the best metric, and (2) a counterhypothesis for the bit in

question may already be represented in the candidate set. Once

added, these counterhypotheses may be immediately pruned,

although our results indicate that for MIMO system sizes at

least as large as 4 × 4, the performance benefit of protecting

these added counterhypotheses combined with the increased

computational complexity of a candidate sort to determining

which nodes to prune mean that protecting all enumerated

nodes for the SOCA algorithm is advised.

In the case of gray mapping and QAM alphabets, while

the sibling nodes are not guaranteed to have small metrics,

they are likely to have small metrics because at least two,

and at most four, of the siblings are nearest neighbors of the

transmitted symbol estimate. In fact, exactly two, three and

four siblings correspond to nearest neighbors in the case of an

estimated corner, border, and interior point for a gray-mapped

QAM alphabet, respectively. We refer to our low and fixed

complexity technique for finding counterhypotheses as parallel

smart candidate adding (PSCA).

Because the SOCA algorithm is breadth-first and possesses

fixed computational complexity it lends itself well to architec-

tural implementation. For reasons we will discuss later, namely

the preprocessing algorithm, the SOCA algorithm does not
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need to consider the problem of missing counterhypotheses to

the children extended from the root node, i.e. the SOCA algo-

rithm does not concern itself with missing counterhypotheses

at the first layer of the detection tree.

Like any other algorithm built on the foundation of the M

algorithm, the tree for the SOCA algorithm can be pruned

using a sort-and-select procedure, reducing the number of

nodes to the mi best nodes whenever mi is less than the

number of nodes enumerated at the current layer in the tree.

When mi is larger than the number of nodes extended at a

given layer in the tree, this sort-and-select stage is omitted for

reduced complexity. In section V we employ no pruning for

soft-output detection of a 4×4 MIMO channel because we can

obtain near max-log optimal performance with bi = 1 ∀i > 1.

Here, instead of a sort-and-select procedure, all that is required

is to determine the minimum cost node at each layer in the tree.

We will, however, resort to pruning for soft-output detection

of an 8 × 8 MIMO channel, where the dimensionality of the

problem leads to higher complexity to maintain near-optimal

performance. When a sort-and-select is employed one option

is the heapsort algorithm [20]. The heapsort algorithm, at the

ith layer of the tree, is achieved with computational complexity

Θ(mi log mi) .

A concise description of the SOCA algorithm is provided

in Fig. 2. In summary, the SOCA algorithm takes as input the

received signal r, the MIMO channel H, the alphabet A, and

two vectors b = [b1 b2 . . . bNt
] and m = [m1 m2 . . . mNt

],
where b grows the tree by adding nodes and m prunes the tree

by deleting nodes. The set S is used to denote the surviving

nodes at the current layer in the tree. We recommend keeping

the elements of b small (1 if possible), with an exception

for the first detection layer (i.e. b1 > 1) due to the fact that

the diversity order of the first symbol to be detected is Nr −
Nt +1 and a mistake here leads to error propagation. In many

practically relevant system configurations b = [b1 1 . . . 1]
with b1 set to between 25% and 50% of q yields excellent

performance at very low complexity. The reason we do not

need to set b1 equal to q is because of our use of a smart-

ordered QR algorithm, i.e. the first line in Fig. 2. Without

lines 6 through 11 and the assurance of a smart-ordered QR

decomposition in line 1, the rest of the pseudocode is simply

the M algorithm with variable b and m.

B. Ordering of the Channel Matrix

The mapping of layers in the detection tree to transmitted

symbols is a critical factor in determining either the perfor-

mance or the computational complexity (or both) for soft-

output MIMO detection. This mapping, which is a direct

consequence of the channel matrix ordering during the QR

decomposition, deserves careful attention. Specifically, the

detection order is a key factor affecting the performance of

all suboptimal tree-based detectors, from simple decision-

feedback detectors [21], [22] to hard-output breadth-first de-

tectors [19], [23], [24] to, as we will show, soft-output fixed-

complexity breadth-first detectors. Layer ordering can, in ad-

dition to improving the performance of suboptimal detectors,

also be used to reduce the average computational complexity

of variable complexity detectors [15].

Algorithm: SOCA

Input: r,H,b,m
Output: L
[Q,R,P] = SOQR(H, b1)1

y = Q∗r2

S = root node3

for i = 1 : Nt do4

S = ∪node∈S {bi best children of node}5

if i > 1 then6

for j = (i − 1)ω + 1 : iω do7

Flip bit j of ĉPMAP and add the8

corresponding node to S
end9

end10

S = mi best of S11

end12

L = PS13

Fig. 2: SOCA Algorithm Description.

An ordered QR decomposition is used to achieve the desired

ordering, i.e. HP = QR, where P is a permutation of INt
.

The BLAST ordering [22] is the optimal detection order for

hard-output decision-feedback detection, when only a single

path of the tree from root to leaf is traversed, since it

maximizes the SNR at each layer. An attractive alternative to

the BLAST ordering is the sorted QR decomposition (SQRD)

[25], which achieves nearly the same hard-output decision-

feedback performance as the BLAST ordering with reduced

complexity.

The BLAST ordering is not generally optimal when more

than one node is enumerated at any stage in the detection tree.

For example, the parallel detector (PD) of [23] enumerates

all q child nodes of the root node and extends each of

these nodes using decision feedback to obtain q leaf nodes.

The parallel detector works best when the weakest received

signal component is detected first, so that its contribution is

completely removed from the detection problem. Intuitively,

this is because there is no possibility for an error to occur in a

layer where all child nodes are enumerated. Consequently, it

is desirable to enumerate all child nodes in the layer with the

largest noise enhancement to minimize performance loss. In

[19] the parallel detector ordering was extended by employing

the weakest-first parallel detector ordering for layers where all

q child nodes are enumerated and the strongest-first BLAST

ordering for all other layers. In [26] it was shown that the

ordering of [19] maintains the diversity order of the maximum-

likelihood detector with a fixed complexity and order Θ(q
√

Nt)
if Nr = Nt, when all nodes in the first ⌊

√
Nt⌋ layers are

enumerated.

A detection order for cases where the number of child nodes

to be enumerated from each parent is between 1 and q is

given by the B-Chase detector [24]. B-Chase preprocessing

has been shown to gracefully trade off between the opposing

design goals of maximizing (as in the BLAST ordering) vs.

minimizing (as in the PD ordering) the SNR of the first
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detection layer by allowing the ordering algorithm to consider

an increase in the number of child nodes enumerated from the

root node as an effective SNR gain for the receiver.

We now present a particular B-Chase preprocessing configu-

ration that we found to perform well. We call this configuration

the smart-ordered QR (SOQR) decomposition. A SOQR de-

composition takes as inputs H and b1 and produces the outputs

Q, R, and P. The key step in the SOQR is to determine which

layer to detect first. This decision is a function of the per-layer

SNRs and b1. As b1 is increased from 1 to q the layer selected

to be detected first moves from the one with the highest SNR to

the one with the lowest. This is done so that as b1 is increased

to approach q we order the detection based on the assumption

that detection errors in the first layer in the tree are unlikely.

Indeed, they are impossible when b1 = q.

We propose that the index k of the first layer to be detected

be chosen according to (10), i.e. the B-Chase criterion [24].

The matrix Y∗ = R−1 is determined by a QR decompo-

sition of the channel matrix, i.e. QR = H. Additionally,

gs,n = Y∗
sYn/‖Yn‖, where Yn is the nth column of Y.

The parameter γ2
b1

is the effective SNR gain (see [24]) at the

first detection layer when b1 child nodes are enumerated from

the root node. For QPSK transmission γ2
1 = 1, γ2

2 = γ2
3 = 2

and γ2
4 = ∞. Values of γ2

bi
for 16 and 64-QAM transmission

are found in [24]. However, because the value for γ can

be determined using a lookup table that is a function of

the parameter b1, the selection for b1 does not influence the

complexity of the SOQR decomposition. The complexity of

(10) is dominated by computing the squared column norm

‖Yn‖2 a total of Nt times and the Nt(Nt − 1) vector

multiplications Y∗
sYn to compute all gs,n values.

After selecting the index of the first layer to be detected,

the remainder of the SOQR is essentially a SQRD [25], where

the ordering of the first detection layer is forced. The SOQR

can be achieved with complexity order Θ(N3
t ). Pseudocode

for the SOQR algorithm is provided in Fig. 3. Note that the

forced ordering in line 1, the initialization of k2 in line 3, and

the forced ordering of lines 5-12 that ensure the first layer

detected is chosen according to (10).

C. Computational Complexity

The computational complexity of list MIMO detection can

be measured in many ways, e.g. using the number of floating

point operations, silicon area, or amenability to parallelization.

However, such measures depend critically on the specific

target architecture: fixed vs. floating point operation, ASIC

vs. FPGA, etc. A well accepted and relatively architecture-

agnostic metric for computational complexity is the number

of visited nodes in the detection tree [14], [27]. This metric

has gained increased popularity with the introduction of a one

node per cycle hardware implementation as reported in [27].

In this paper we quantify computational complexity by the

number of nodes visited, with the understanding that any node

whose branch metric is computed is considered a visited node.

This avoids a complexity comparison that is unbalanced in

favor of schemes that calculate metrics for nodes they later

discard (as, e.g. the M algorithm) as opposed to algorithms

Algorithm: SOQR

Input: H, b1

Output: Q,R,P

Find k using (10): a function of H and b11

Q = H, R = 0Nt
, P = INt

2

d = diag(Q∗Q); k2 = k3

for i = NT : −1 : 1 do4

if i==1 then5

k = 16

else7

k = arg min
k 6=k2

d
8

end9

if i == k2 then10

k2 = k11

end12

Swap columns i and k in Q, R, P13

Swap elements i and k in d14

Ri,i =
√

di15

qi = qi/Ri,i16

for j = i − 1 : −1 : 1 do17

Ri,j = q∗
i qj18

qj = qj − Ri,jqi19

dj = dj − |Ri,j |220

end21

di = ∞22

end23

Fig. 3: Smart-Ordered QR (SOQR) Decomposition.

that only calculate metrics for nodes they do visit (as, e.g. the

Schnorr-Euchner sphere decoder).

Observe that using the number of visited nodes omits the

complexity of the preprocessing algorithm. Such an omission

may not be acceptable for fast-fading scenarios where the

computational complexity of the detection ordering dominates,

but is more appropriate for scenarios where the coherence

time of the channel is long. Additionally, the preprocessing

complexity can be extracted from our discussion because the

preprocessing algorithms for all detectors compared in section

V possess the same complexity order Θ(N3
t ).

The SOCA algorithm has the property that when m = qi)

and b = [b1 1 . . . 1], as is the case for the 4 × 4 results

presented in section V, only

µ = b1 +

Nt
∑

i=2

b1 + ω(i − 1) = Nt

(

b1 +
ω(Nt − 1)

2

)

(11)

branch metrics are computed. Multiplying out the right hand

side of (11) demonstrates that the number of branch metric

computations for the SOCA algorithm has order Θ(N2
t ).

Additionally, the list size for the SOCA algorithm when

b = [b1 1 . . . 1] is given by:

ℓ = min (m1, b1 + ω (Nt − 1)) . (12)

In [3] the interested reader will find general expressions for

the number of branch metric computations and list sizes for
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k =



















arg max
n∈{1,...Nt}

‖Yn‖2, b1 = q

arg max
n∈{1,...Nt}

min

{

γ2

b1

‖Yn‖2 , 1

min
s6=n

{‖Ys‖2−|gs,n|2}

}

, otherwise
(10)

fixed-complexity breadth-first tree-based detection algorithms.

Consequently, for the SOCA algorithm, the list size grows

linearly with the number of input streams.

V. RESULTS AND ANALYSIS

A. Simulation Setups

In this section we present results for both fast and slow

fading scenarios in order to demonstrate the value of the

proposed algorithm in situations where the ability to extract

either (a) the time diversity or (b) the spatial diversity from

the channel is essential. For both the fast and slow scenarios

the detector is run only once, i.e. we do not employ iterative

detection-decoding. The proposed SOCA algorithm is com-

pared against the list sphere detector (LSD) [9] and the list

sequential detector (LISS) [28], where the LISS employs a

bias parameter to perform statistical tree pruning. This LISS

length bias term is set to 1 at each level of the detection tree

[29] to reduce computational complexity at the cost of a small

performance penalty relative to the LSD with the same list

size. We also compare against the recently introduced single-

tree-search LSD (STS-LSD) algorithm [15] and the list fixed-

complexity sphere detector (LFSD) [16]. For completeness,

we compare against a soft-output implementation of the M

algorithm [18], where we form L from the mNt
best leaf

nodes at the final detection layer.

For the LSD, LISS, M, LFSD and SOCA detectors we

clipped the LLRs at a magnitude of ±6. For the STS-LSD

algorithm we varied the value of the clipping parameter Lmax

to achieve a performance complexity tradeoff2. As Lmax ap-

proaches infinity, the performance of the STS-LSD approaches

that of the max-log optimal detector [15]. Conversely, as Lmax

approaches zero the performance of the STS-LSD approaches

that of the hard-output joint maximum likelihood (JML) detec-

tor. For all algorithms we employ unbiased MMSE detection,

meaning that we removed the contribution of the MMSE

extended channel matrix from the node metric computations

so that the node metrics are exactly (6) (see [30] for details).

SQRD preprocessing is used to reduce the complexity of the

variable complexity algorithms.

Because the LSD, STS-LSD and LISS algorithms have vari-

able computational complexity, results for the average and the

99.9th percentile computational complexities, as measured in

terms of the number of visited nodes, are provided. We chose

99.9% to ensure that, if we limited the maximum complexity

of the tree search, the number of additional errors introduced

would be substantially lower than a typical raw bit error rate

at the input of the channel decoder – say 0.01 (so 99.9%

2The values for Lmax we provide are larger than reported in [15], but are
equivalent, because we do not normalize by the noise variance.

would be 10% additional errors). The LFSD, M, and SOCA

algorithms have fixed computational complexity and so only

one number is reported. The M algorithm was realized using

SQRD preprocessing, while the LFSD and SOCA employ

their algorithmic specific preprocessing. Finally, all algorithms

employ the best-first Schnorr-Euchner enumeration [31], rather

than Fincke-Pohst enumeration [32].

We consider transmission over a spatially i.i.d. fading 4 × 4
MIMO channel using 16-QAM and 64-QAM modulation

alphabets and an 8×8 MIMO channel using 16-QAM inputs.

A random interleaver is employed and detection is performed

using the complex-valued system model.

1) Fast Fading: For the fast-fading scenario we use tempo-

rally i.i.d. fading, i.e., each transmitted vector symbol sees a

new channel realization. The information block size (including

tail bits) is 9216 bits. We use a setup equivalent to the one

in [9]: a rate 1/2 parallel concatenated convolutional code

(PCCC) based on memory 2 constituent convolutional codes

with generator polynomials (7R, 5)octal using 8 internal itera-

tions of logMAP decoding, where R denotes which generator

is in the denominator. Fast-fading performance is measured in

terms of the averaged Eb/N0 in dB to achieve a bit error rate

of 10−5 to match [9].

2) Slow Fading: Here we assume the channel does not

change during the duration of the entire transmitted codeword

and that the channel matrix entries are drawn anew with the

transmission of each new codeword. A convolutional code with

code polynomial [133 171] and constraint length 7, punctured

to code rate 3/4 is employed and the information block

size (including tail bits) is 3456. The convolutional decoder

employed is MaxLog(MAP). Performance is measured in

terms of the Eb/N0 in dB required to achieve a frame error

rate (FER) of 10−2. We used the FER to measure slow-fading

performance because for this scenario, where we employ a

weak code and the channel offers no time diversity, BER

results can often be misleading. The target FER of 10−2 was

selected because it is common to design systems for this error

rate [15].

B. Results

Fig. 4 depicts performance versus computational complexity

for 16-QAM transmission in fast Rayleigh fading. The average

computational complexities for the LSD, LISS, and STS-LSD

are represented using dashed lines and the 99.9th percentile

computational complexities are represented using solid lines.

The LSD is represented by square markers, the STS-LSD by

diamond markers and the LISS by circular markers. For the

LSD the list size ℓ is provided for each marker. The same list

sizes are represented for the LISS, although the performance

results differ due to the statistical tree pruning performed by
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Fig. 4: Performance vs. complexity for soft-output 4 × 4
MIMO detection schemes using 16-QAM transmission in fast

Rayleigh fading. The numbers corresponding to the SOCA

curve represent the value for b1 and the numbers corresponding

to STS-LSD curves represent Lmax.

the LISS [29]. For the STS-LSD the numbers next to the mark-

ers represent the value of the clipping/pruning parameter Lmax

as described in [15], instead of the list length, because this

parameter determines the computational complexity for the

STS-LSD. In addition to the variable complexity algorithms,

the solid curve denoted with pentagram markers represents

the proposed fixed complexity SOCA algorithm. The numbers

corresponding to each SOCA marker denote the number of

nodes enumerated at the first detection layer b1. Finally, we

note that for all 4×4 SOCA results we use the parameterization

b = [b1 1 1 1], where b1 is the number of child nodes

enumerated from the root of the tree, and m = ∞ so that no

tree pruning occurs. A consequence of omitting tree pruning

is that we do not need a sort-and-select stage to determine

the mi nodes to retain at the ith layer of the tree. Instead, all

that is needed is the selection of the lowest cost node at any

layer in the tree so that parallel smart candidate adding can

be applied to this node.

Fig. 4 shows that for the fast-fading case, the averaged

computational complexity for the STS-LSD (i.e. STS-LSD) al-

gorithm achieves a desirable performance-complexity tradeoff.

Often the worst-case (or bounded worst-case) computational

complexity is more important in terms of system design.

The performance-complexity curve for the STS-LSD therefore

serves as a somewhat idealized reference to which other

detection algorithms should aspire. Here the fixed-complexity

SOCA algorithm with b1 = 8 is an attractive option because,

while it performance-complexity profile is worse than the

STS-LSD, it significantly outperforms the 99.9th percentile

STS-LSD. Fig. 4 also shows that for b1 > 4 the SOCA

achieves a better performance-complexity tradeoff than the

LISS or LSD algorithms. In contrast to all variable complexity

algorithms, the SOCA algorithm achieves its performance-

complexity tradeoff with fixed computational complexity. This
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Fig. 5: Performance vs. complexity for soft-output 4 × 4
MIMO detection schemes using 64-QAM transmission in fast

Rayleigh fading. Results for the LFSD [16] are provided for

b = [64 1 1 1], b = [64 2 1 1] and b = [64 4 2 1].

is a desirable property because, like other breadth-first algo-

rithms [33], it leads to a regular design structure that lends

itself well to parallelization and low latency.

Fig. 5 provides the same performance-complexity plot as

Fig. 4, but for 64-QAM transmission. Once more the SOCA

performance-complexity curve falls between that of the av-

erage and 99.9th percentile computational complexity for the

STS-LSD, with the SOCA having fixed computational com-

plexity. New to Fig. 5 are comparisons against two fixed com-

plexity soft-output algorithms, namely a soft-output version of

the M algorithm [18] and the recently proposed list fixed-

complexity sphere detector (LFSD) [16]. The M algorithm

is denoted by hexagram markers and the corresponding term

M(m, b) is provided, where b is the number of nodes extended

and m is the number of nodes retained at each layer in the tree,

respectively. When b = |A| the M algorithm is also known as

the K-best algorithm [34]. The reference performance provided

was found using the K-best algorithm and m = 256. Such

a realization would compute over 36000 branch metrics and

so the computational complexity is not shown. The LFSD is

denoted by lightly shaded circular markers with dark edges. In

its minimum configuration the LFSD reduces to a soft-output

parallel detector, i.e. b = [64 1 1 1] with all leaf nodes in

the tree used to form L. LFSD results are also provided for

b = [64 2 1 1] and b = [64 4 2 1], where the subscript b is

used to denote that the vector to which it is attached is b. One

reason the SOCA algorithm outperforms the LFSD in terms of

the performance-complexity tradeoff is because of the way it

adds counterhypotheses. Specifically, rather than increasing the

elements of b like the LFSD (i.e. bi > 1), the SOCA simply bit

flips around the estimate that is currently best, thereby growing

the tree by addition of nodes rather than a multiplicative factor

of nodes. Additionally, because of its use of the SOQR, the

SOCA does not need to extend all q = 16 child nodes at the

first layer of the tree to achieve good performance.
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Fig. 6 provides a performance-complexity plot for 16-QAM

transmission in slow fading, where the curves, algorithms and

markers are the same as outlined previously, with LFSD results

provided for [16 1 1 1]b, [16 2 2 1]b, [16 2 2 2]b and

[16 4 2 2]b. From Fig. 6 it can be observed that an increase

in SNR is required for the slow-fading scenario to achieve

comparable error rate performance to the fast-fading scenario.

In slow fading the SOCA algorithm remains an attractive op-

tion, even though its performance-complexity profile is never

superior to the average computational complexities of the

LSD, LISS, or STS-LSD. However, the fixed computational

complexity of the SOCA algorithm is again significantly lower

than the worst-case (or bounded worst-case) computational

complexity of the LSD and LISS. Finally, the 99.9th percentile

computational complexity for the STS-LSD has almost the

same computational complexity as the SOCA algorithm for

the algorithmic realizations presented. Here, the STS-LSD

employing upper bounded computational complexity is an

attractive alternative to the SOCA.

Fig. 7 provides results for a 4 × 4 channel employing 64-

QAM transmission in slow fading and is used to demonstrates

the importance of the SOQR on the overall error rate perfor-

mance. The solid curve with left facing triangular markers, de-

noted SQRD-CA, represents the SOCA algorithm except that

instead of using a SOQR decomposition the algorithm employs

the commonly used sorted-QR decomposition [25]. Ignoring

the forced detection ordering in the first layer, the SQRD-CA

and SOCA have identical computational complexities, yet the

SOCA algorithm outperforms the SQRD-CA algorithm by 1.2
dB when b1 = 16.

We now look at a larger 8 × 8 communication channel.

Fig. 8 provides performance versus computational complexity

results for a fast-fading 8×8 MIMO channel. The performance

of the K-best algorithm with m = 512 is the reference

performance for this system configuration. Reference is also

made to the M algorithm with m = b = 4 and m = b = 8. In

order to achieve a desirable performance versus computational

complexity tradeoff for this larger system size, the SOCA
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algorithm requires a change to b such that b = [b1 2 . . . 2],
where b1 is the number of child nodes enumerated from the

root of the tree. This is because the performance drops off

significantly when b is maintained at b = [b1 1 . . . 1]. A

second important change is the incorporation of tree pruning.

For the results shown in Fig. 8, at each level of the tree the

survivor nodes were pruned to mi = b1, i.e. the m vector

for the SOCA algorithm was set to m = [b1 b1 . . . b1]. This

means that in Fig. 8 the corresponding value next to each

marker for the SOCA represents the algorithmic realization

when b1 = m8 = ℓ. Without tree pruning the performance

of the SOCA algorithm is slightly improved relative to the

SOCA without tree pruning. However, these results are not

shown because the computational complexity would increase

prohibitively when tree pruning is omitted. This increase is due

to the large system size which, without tree pruning, allows
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Rayleigh fading.

for extra layers of tree growth. Finally, we note that the SOCA

algorithm has roughly the same performance-complexity curve

as the average complexity of the STS-LSD.

Fig. 9 provides the same 8 × 8 16-QAM results as Fig. 8

but for the slow-fading scenario. The SOCA algorithm with

b1 = m8 = 16 has roughly the same performance as the

LISS with ℓ = 4 but its computational complexity is 45%
of the 99.9th percentile computational complexity. Addition-

ally, the SOCA algorithm with b1 = 12 has roughly the

same performance as the M algorithm with parameterization

m = b = 8, but with 57% of the complexity. This savings

reduction come from the fact that, for layers 2 through Nt of

the tree, we have a multiplier of bi = 2 for the SOCA and

a significantly larger bi = 8 for the M algorithm. Finally, we

observe that the SOCA algorithm has a fixed performance-

complexity curve that sits between the average and 99.9th

percentile computational complexity of the STS-LSD. Thus,

even for the most challenging scenario presented (i.e. 8 × 8
16-QAM in slow fading) the SOCA algorithm remains a good

choice for soft-output MIMO detection.

VI. CONCLUSION

We presented a soft-output MIMO detection algorithm that

achieves near max-log optimal error rate performance with low

and fixed computational complexity. The proposed algorithm

combines a smart-ordered QR decomposition with candidate

adding and a parallel breadth-first search of the detection

tree to achieve its desirable performance-complexity tradeoff.

Furthermore, the proposed algorithm visits nodes in the de-

tection tree only once, employs a simple bit flipping to add

candidates, and is able to avoid a sort-and-select operation for

many practical scenarios. Results indicated that the proposed

algorithm performs well in both fast and slow fading 4 × 4
and 8 × 8 MIMO channels with QAM inputs.
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