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Abstract—The extension of Decode-and-Forward (DF) relay-
ing by lossy forwarding has the potential to ensure a reliable
multi-hop message transport in wireless mesh networks. Unlike in
conventional DF relaying, with lossy forwarding a relay forwards
a message regardless whether errors have been detected after
decoding. At the destination, a proper joint decoding technique
exploits the high correlation of messages received via different
network paths. According to the Slepian-Wolf correlated source
coding theorem a performance improvement compared with the
conventional DF relaying can be expected. The performance can
be optimized by a power allocation scheme that distributes the
total transmit power budget between source and relay nodes.
This paper analyzes the outage probability (OP) based on the
Slepian-Wolf source correlation theorem for a system with two
relays and designs a power allocation scheme to minimize the
OP. The proposed scheme reduces the OP by up to 1.5 orders
of magnitude compared to the reference case of equal power
allocation. We also compare the performance gain of a system
with two relays against the case with a single relay for the same
total transmit power budget. Results show a reduction of the OP
of at least one and up to two orders of magnitude.

I. INTRODUCTION

Wireless networks are confronted with enormous chal-
lenges when the communication infrastructure of mobile cel-
lular networks fails. For example, in events of environmental
disasters the communication infrastructure of mobile cellular
networks can be damaged, which may lead to a collapse of
the communication system. In this scenario, intact mobile
devices can establish a mesh network without the need for
central coordination and a backbone infrastructure. The system
poses high requirements on the energy efficiency and reliable
information transfer, i.e. mobile devices are confined by the
limited energy resources. Therefore, the transmit power should
be reduced to ensure long participation of all mobile devices
in the network. Evidently, a low signal-to-noise ratio (SNR)
occurs and results in unreliable information transfer.

Cooperative communication techniques emerge as promis-
ing strategies to ensure reliable data transport in mesh net-
works. They utilize spatial diversity by sending data via in-
termediary relay nodes between source and destination, which
forward the data [1]. Nevertheless, conventional Decode-and-
Forward (DF) schemes are suboptimal, since the relays ver-
ify that the received data is not corrupted and eventually
discard erroneous messages. However, lossy links in mesh
networks are inevitable, and energy consuming retransmissions
are needed to ensure reliable multi-hop connectivity.

In order to improve energy efficiency and establish a
reliable information transfer in mesh networks, an innovative
distributed source coding (DSC) scheme has been proposed
in [2]. The DSC scheme exploits that an erroneous message

at the relay is highly correlated with the original message and
can consequently function as a helper in the decoding process
at the destination. The performance gain can be reasoned with
the Slepian-Wolf correlated source coding theorem [3]. In this
study, the link between source and relay is considered to be
lossy and characterized by a bit flipping probability pi [4].
At the relay the erroneous message is re-encoded, interleaved
and forwarded to the destination. At the destination the joint
decoding technique presented in [2] exploits the correlation
between original message and erroneous message with a
likelihood ratio update function. A significant improvement of
the decoding performance can be observed [2].

The outage probability (OP) for a lossy forwarding one-
relaying (LFOR) system based on the Slepian-Wolf correlated
source coding theorem with block Rayleigh fading (BRF)
channel has been analyzed in [5]. More recently, a power
allocation strategy to minimize the OP has been proposed
in [6]. In the present paper, we extend the LFOR system
considered in [5] to a lossy forwarding two-relaying (LFTR)
system and derive the OP based on the Slepian-Wolf correlated
source coding theorem. Similar to [6] we propose a power
allocation strategy to minimize the OP for the LFTR system.

The remainder of the paper is organized as follows: Sec. II
describes the LFTR system model and introduces the Slepian-
Wolf admissible rate region for the LFTR system. Sec. III
derives the OP. Sec. IV introduces the power allocation strat-
egy based on convex optimization. Sec. V verifies the OP
derivation and power allocation strategy by means of a Monte-
Carlo simulation and compares the LFTR system to the LFOR
system. Sec. VI summarizes the results of the paper.

II. SYSTEM MODEL

A. LFTR System Model

We consider a half-duplex relay system, where the
source (S) and two relays (R) cooperate to transmit to the
destination (D) as shown in Fig. 1. To ensure orthogonal
transmission, time division multiple access (TDMA) is as-
sumed. The source encodes and broadcasts an information
sequence b0 with sequence length N to both relays and
the destination. The information sequence is an independent
and identically distributed (i.i.d.) sequence with Pr[b0[n] =
0] = Pr[b0[n] = 1] = 0.5. Each relay decodes the received
information sequence. The decoded information sequences
b1 and b2 can differ from the source information sequence
depending on the channel states between source and relays.
Nevertheless, b1 and b2 are highly correlated with b0 [7]. The
information sequences at the relays are interleaved, re-encoded
and forwarded to the destination. Allowing the transmission of
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Fig. 1: Lossy forwarding two-relaying system model.

erroneous information sequences at the relay is also referred to
as lossy forwarding [5]. All received information sequences b0,
b1 and b2 are jointly decoded at the destination to retrieve b0.
The joint decoder can exploit the correlation of the information
sequences and achieve tremendous performance gain in terms
of the estimated source information sequence b̂0 [2].

All links are assumed to be affected by independent BRF
and additive white Gaussian noise (AWGN) with mean power
N0. The probability density function (pdf) of the instantaneous
SNR γi is

p(γi) =
1

Γi
exp(− γi

Γi
), i ∈ {0, ..., 4} (1)

with average SNR between source and relays, source and
destination

Γi =
E0

N0
·Gi, i ∈ {1, 2, 3} (2)

and average SNR between relays and destination

Γj =
Ei
N0
·Gj , (i, j) ∈ {(1, 3), (2, 4)}, (3)

where Ei is the transmit power of source (i = 0) or relay i
(i = 1, 2), respectively. The geometrical gain Gi = (di/d0)

−η

depends on the distances di between source, relays and
destination as shown in Fig. 1. The geometrical gain is
normalized to the distance between source and destination
d0. The path loss exponent η is 3.52 to represent urban and
suburban areas, determined empirically in [8].

The bit flipping probability pi = Pr[b0[n] 6= bi[n]],
i ∈ {1, 2} defines the degree of correlation between source
and relay information sequences. According to Shannon’s
lossy source-channel separation theorem and Hamming’s
distortion measure [5] the bit flipping probability can be
determined with the instantaneous SNR γi of the BRF channel

pi(γi) =

{
H−1
b (1− Φ(γi)) , for Φ−1(0) ≤ γi ≤ Φ−1(1)

0, for γi ≥ Φ−1(1)

(4)

where Φ(γi) = 1
Rc

log2(1 + γi), and Φ−1(·) is the in-
verse function of Φ(·). Rc represents the spectrum effi-
ciency, including channel coding rate and modulation mul-
tiplicity. Rc is assumed to be the same for all links.
H−1
b (·) is the inverse function of the binary entropy function

Hb(x) = −x log2(x)− (1− x) log2(1− x).

B. Slepian-Wolf Admissible Rate Region

The joint decoder performance gain presented in [2] is
based on the Slepian-Wolf correlated source coding theo-
rem [3]. The source and all relays are considered to be
correlated sources with transmission rates Ri, respectively.
According to the Slepian-Wolf theorem, b0 can be recovered
with arbitrary small error rate, if the transmission rates satisfy
the inequality constraints [9]

R0 ≥Hb(b0 | b1,b2)

=Hb(p1(γ1)) +Hb(p2(γ2))

−Hb(q1,2(γ1, γ2)), (5)
R0 +R1 ≥Hb(b0,b1 | b2)

=Hb(p1(γ1)) +Hb(p2(γ2)), (6)
R0 +R2 ≥Hb(b0,b2 | b1)

=Hb(p1(γ1)) +Hb(p2(γ2)), (7)
R0 +R1 +R2 ≥Hb(b0,b1,b2)

=1 +Hb(p1(γ1)) +Hb(p2(γ2)), (8)

or R0 satisfies the inequality constraint

R0 ≥Hb(b0) = 1, (9)

with cross-over probability q1,2(γ1, γ2) = p1(γ2) + p2(γ2) −
2p1(γ1)p2(γ2) [10]. The binary entropy of a vector is defined
as Hb(b) = H(b)/N . All transmission rates which satisfy (5) -
(8) or (9) are referred to as the Slepian-Wolf admissible rate
region. Assuming channel codes with Gaussian codebooks, the
relationship between rate Ri and instantaneous SNR is given
by [4]

Ri = Φ(γj), (i, j) ∈ {(0, 0), (1, 3), (2, 4)}. (10)

Finally, the system model presented in Fig. 1 can be
expressed comprehensively by the instantaneous and average
SNRs of the BRF channels.

III. DERIVATION OF THE OUTAGE PROBABILITY

A. LFTR system

The OP of the LFTR system is defined by the Slepian-
Wolf inadmissible rate region which includes all tupels of
(R0, R1, R2) that violate at least one inequality constraint in
(5) - (8) or (9). The overall OP consists of nine OPs

P2,out =

9∑
n=1

Pn, (11)

where the index 2 indicates two deployed relays. These OPs
are determined by the joint pdf, which can be simplified by the
product of the individual pdfs of the independent BRF channels
p(γ0, ..., γ4) =

∏4
i=0 p(γi). All OPs can be calculated with a

five dimensional integral

Pn =

∫
γ0

· · ·
∫
γ4

4∏
i=0

p(γi)dγ4 · · · dγ0, (12)

where the integral boundaries determine the OP value. Due to
the property of (4), four cases are defined by different regions
of the bit flipping probabilities (cf. Tab. I). For the cases 1,2



TABLE I: Case distinction

Case Bit Flipping Probability Figure

1 p1 = 0, p2 = 0 Fig. 2a

2 p1 = 0, 0 < p2 ≤ 0.5 Fig. 2b

3 0 < p1 ≤ 0.5, p2 = 0 Fig. 2b

4 0 < p1 ≤ 0.5, 0 < p2 ≤ 0.5 Fig. 2c

TABLE II: Reduced entropies based on case distinction

Case 1 2 3 4

H(b0 | b1, b2) 0 0 0 Hb(p1) +Hb(p2)
−Hb(q1,2)

H(b0, b1 | b2) 0 Hb(p2) 0 Hb(p1) +Hb(p2)

H(b0, b2 | b1) 0 0 Hb(p1) Hb(p1) +Hb(p2)

H(b0, b1, b2) 1 1 +Hb(p2) 1 +Hb(p1) 1 +Hb(p1) +Hb(p2)

and 3 the entropies defined in (5) - (8) can be reduced. The
entropies for case 4 can not be simplified, since both relays
observe the source information sequence erroneously. Tab. II
summarizes the entropies for all cases.

In the following the spectrum efficiency Rc is assumed to
be 1, corresponding to channel rate 1/2 and quadrature phase-
shift keying (QPSK).

Case 1 | Both relays observe the source information
sequence error-free. The OP P1 is presented in Fig. 2a. The OP
boundaries for the channels shown in Fig. 2a can be converted
to the instantaneous SNR integral boundaries

P1 = Pr[0 < R0 < 1, 0 < R1 < 1−R0,

0 < R2 < 1−R0 −R1, p1 = 0, p2 = 0]

= Pr[0 < γ0 < 1, 0 < γ3 < 21−Φ(γ0) − 1,

0 < γ4 < 21−Φ(γ0)−Φ(γ3) − 1,

1 ≤ γ1 <∞, 1 ≤ γ2 <∞]. (13)

Case 2, Case 3 | One relay observes the source information
sequence error free while the other relay observes an erroneous
version of the information sequence. Fig. 2b presents the OPs
P2 and P3 for case 2. Case 3 is the symmetric complement to
case 2 and the OPs P4 and P5 can be calculated accordingly.

For the OPs P2 and P3 the channel boundaries are pre-
sented in Fig. 2b and can be converted to the instantaneous
SNR integral boundaries

P2 = Pr[0 < R0 < Hb(p2), 0 < R1 < Hb(p2)−R0,

0 < R2 <∞, p1 = 0, 0 < p2 ≤ 0.5]

= Pr[0 < γ0 < 21−Φ(γ2) − 1,

0 < γ3 < 21−Φ(γ0)−Φ(γ2) − 1,

0 < γ4 <∞, 1 ≤ γ1 <∞, 0 ≤ γ2 < 1], (14)
P3 = Pr[0 < R0 < 1,max(Hb(p2)−R0, 0) < R1 <

1 +Hb(p2)−R0, 0 < R2 < 1 +Hb(p2)−R0 −R1,

p1 = 0, 0 < p2 ≤ 0.5]

P3 = Pr[0 < γ0 < 21−Φ(γ2) − 1,

max(21−Φ(γ0)−Φ(γ2) − 1, 0) < γ3 <

22−Φ(γ0)−Φ(γ2) − 1,

0 < γ4 < 22−Φ(γ0)−Φ(γ3)−Φ(γ2) − 1,

1 ≤ γ1 <∞, 0 ≤ γ2 < 1]. (15)

Case 4 | Both relays observe an erroneous version of
the source information sequence. The binary entropy of the
cross-over probability Hb(q1,2) = Hb(p1 + p2 − 2p1p2)
depends on p1 and p2. Consequently, the integral boundaries
contain the inverse binary entropy function H−1

b (·) and Φ(·)
which is a logarithmic function. These non-linearities make
the exact analytical integration difficult to achieve. Therefore
an approximation of the binary entropy is introduced

Hb(q1,2) = Hb(p1 + p2 − 2p1p2)

≈ max (Hb(p1), H(p2)) (16)

with the relative approximation error

ε(p1, p2) =
| Hb(q1,2)−max (Hb(p1), H(p2)) |

Hb(q1,2)
. (17)

The relative approximation error is below 10 % if p1 ≷ p2±δ,
with δ = 0.1 and thereby negligible for the error propagation.
However, the approximation contingents an error if p2 − δ <
p1 < p2 + δ and therefore the relative approximation error
propagation is evaluated in the Sec. V.

Fig. 2c presents the OPs P6, P7, P8 and P9. With the
approximation of (16) the integral boundaries are simplified to

P6 = Pr[0 < R0 < min(Hb(p1), Hb(p2)), 0 < R1 <∞,
0 < R2 <∞, 0 < p1 ≤ 0.5, 0 < p2 ≤ 0.5]

= Pr[0 < γ0 < 2min(1−Φ(γ1),1−Φ(γ2)) − 1, 0 < γ3 <∞,
0 < γ4 <∞, 0 ≤ γ1 < 1, 0 ≤ γ2 < 1], (18)

P7 = Pr[ min(Hb(p1), Hb(p2)) < R0 < 1,

0 < R1 < min(1 +Hb(p1) +Hb(p1)−R0, 1),

0 < R2 < min(1 +Hb(p1) +Hb(p1)−R0 −R1, 1),

0 < p1 ≤ 0.5, 0 < p2 ≤ 0.5]

= Pr[2min(1−Φ(γ1),1−Φ(γ2)) − 1 < R0 < 1,

0 < γ3 < min(22−Φ(γ0)−Φ(γ1)−Φ(γ2) − 1, 1)

0 < γ4 < min(22−Φ(γ0)−Φ(γ3)−Φ(γ1)−Φ(γ2) − 1, 1)

0 ≤ γ1 < 1, 0 ≤ γ2 < 1], (19)
P8 = Pr[ min(Hb(p1) +Hb(p2)) < R0 < Hb(p1) +Hb(p2),

0 < R1 < Hb(p1) +Hb(p2)−R0, 1 < R2 <∞,
0 < p1 ≤ 0.5, 0 < p2 ≤ 0.5]

= Pr[2min(1−Φ(γ1),1−Φ(γ2)) − 1 < R0

< 22−Φ(γ1)−Φ(γ2) − 1,

0 < γ3 < 22−Φ(γ0)−Φ(γ1)−Φ(γ2) − 1

1 < γ4 <∞, 0 ≤ γ1 < 1, 0 ≤ γ2 < 1]. (20)

P9 is similar to P8 and can be calculated by interchanging
relay 1 and relay 2.

Unfortunately, the exact close-form expressions for the
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Fig. 2: Slepian-Wolf inadmissible rate region for case 1 (a), where v0 = 1, v1 = 1, v2 = 1, case 2 (b), where u0 = Hb(p2),
u1 = Hb(p2), v0 = 1 w0 = 1 + Hb(p2), v2 = 1, w1 = 1 + Hb(p2), w2 = 1 + Hb(p2) and case 4 (c), where t0 =
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v2 = 1, w0 = 1 +Hb(p1) +Hb(p2), w1 = 1 +Hb(p1) +Hb(p2), w2 = 1 +Hb(p1) +Hb(p2).

OPs are not easily achievable. To proceed, we character-
ize the high-SNR behaviour. We rewrite the OP equations
by using the MacLaurin series of the exponential func-
tion exp(−x) ≈ 1− x for x� 1 [11, Eq. (1.211.1)] and only
consider the lowest-order terms. The OP reduces to

P2,out ≈
C1

Γ0Γ3Γ4
+

1

Γ2

C1

Γ0Γ3
+

1

Γ1

C1

Γ0Γ4
+

1

Γ1Γ2

C2

Γ0
, (21)

where C1 = 1+ln(2)2−2 ln(2) and C2 = 3−4 ln(2). For rea-
sons of interpretation we define two probability types, which
are contained in every term of the sum in (21). The case proba-
bility PC,i, defined by the regions of the bit flipping probability
and the rate probability PR,i, defined by the region probability
of the rates R0, R1 and R2. The probability that both relays
observe the source error-free (case 1) has an approximate
probability of PC,1 =

∫∞
γ1=1

∫∞
γ2=1

p(γ1)p(γ2)dγ2dγ1 ≈ 1
(cf. Tab. III). However the rate probability, that at least
one inequality constraint (5) - (8) is violated by the tuple
(R0, R1, R2) in case 1 is rather small, i.e. PR,1 = C1/Γ0Γ3Γ4

(cf. P1 in Fig. 2a). The probability of case 2 is PC,2 ≈ 1
Γ2

which is significant lower with respect to PC,1. However, the
rate probability PR,2 = C1/Γ0Γ3 is significantly higher with
respect to PR,1. P2 is the important OP for case 2, P3 can be
neglected. The same applies to case 3, where P4 defines the OP.
Case 4 is even less likely than case 2, PC,4 = 1/Γ1Γ2. However,
the rate probability PR,2 = C2/Γ0 is high and determined by
OP P6 in Fig. 2c. Eventually, case 1 is most likely to occur,
however it is unlikely that an outage occurs in this case and
vice versa for case 4. Case 2 and case 3 lie in between. Tab. III
presents the approximated OP in (21) split into case and rate
probabilities.

B. LFOR system

The exact OP for a LFOR system is derived in [5] and can
be approximated for the high-SNR behaviour [12] to

TABLE III: Outage probability split into case and rate proba-
bilities

Case i Case probability PC,i Rate probability PR,i

1
(

1− 1
Γ1

)(
1− 1

Γ2

)
≈ 1

C1
Γ0Γ3Γ4

2
(

1− 1
Γ1

)
1

Γ2
≈ 1

Γ2

C1
Γ0Γ3

3 1
Γ1

(
1− 1

Γ2

)
≈ 1

Γ1

C1
Γ0Γ4

4 1
Γ1Γ2

C2
Γ0

P1,out ≈
C3

Γ0Γ1
+

C3

Γ0Γ3
, (22)

where C3 = 2 ln(2) − 1. Index 1 indicates a single deployed
relay. The second relay in Fig. 1 is removed. In this study we
compare a LFOR system with a LFTR system and investigate
whether the LFTR system has advantages using the same
transmit power budget (cf. Sec. V).

IV. OPTIMAL POWER ALLOCATION

The optimal power allocation maximizes the Slepian-Wolf
admissible rate region and consequently minimizes the OP. The
total transmit power budget ET is redistributed between source
and relay(s) to reduce the OP. The transmit power is allocated
by αi ∈ [0, 1] and

∑M
i=0 αi = 1, with M = 1 for LFOR and

M = 2 for LFTR, to the corresponding source and relay.

Ei = αiET (23)

Consequently, the average SNR can be replaced by

Γi = αjETGi (24)
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Fig. 3: OP for LFTR system with OPA and EPD at
ET/N0 = 15 dB.

with (i, j) ∈ {(0, 0), (1, 0), (3, 1)} for the LFOR system,
(i, j) ∈ {(0, 0), (1, 0), (2, 0), (3, 1), (4, 2)} for the LFTR sys-
tem and normalized noise variance N0 to unity for all channels.
Finally, we can formulate optimization problems for the LFTR
and LFOR system.

A. LFTR system

Substituting Eq. (24) into Eq. (21) we obtain a posynomial
function [13, Chap. 4.5]

P2,out ≈
C1

E3
Tα0α1α2G0G3G4

+
C1

E3
Tα

2
0α2G0G2G3

+
C1

E3
Tα

2
0α1G0G1G4

+
C2

E3
Tα

3
0G0G1G2

, (25)

and therefore the minimization of the OP can be performed by
geometric programming. It has been shown in [13, Chap. 4.5]
that any geometric program can be transformed to a convex
optimization problem,

minimize P2,out(α0, α1, α2)

subject to 0 ≤ αi ≤ 1,∀i (26)∑
i
αi = 1.

B. LFOR system

Substituting Eq. (24) into (22) we obtain a posynomial
function [13, Chap. 4.5]

P1,out ≈
C3

E2
Tα

2
0G0G1

+
C3

E2
Tα0α1G0G3

. (27)

Similar to the LFTR system we can formulate a convex
optimization problem as shown in [6] to

minimize P1,out(α0, α1)

subject to 0 ≤ αi ≤ 1,∀i (28)∑
i
αi = 1.
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Fig. 4: OP for LFTR system with OPA and EPD at
ET/N0 = 20 dB.
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V. SIMULATION RESULTS

The convex optimization problems (26) and (28) are nu-
merically solved with CVX [14]. All relays are located between
the source and the destination. The optimal power allocation
(OPA) is compared to a equal power distribution (EPD), where
the same transmit power is allocated to the source and relay(s).
The approximation of the OP is verified with a Monte-Carlo
simulation.

Figs. 3 and 4 present the OP for an LFTR system with
ET/N0 = 15 dB and ET/N0 = 20 dB, respectively. A significant
reduction of the OP for 0.4 ≤ di/d0 ≤ 0.9, i = 1, 2 with
OPA with respect to EPD can be achieved. A maximum
reduction of 1.5 orders of magnitude can be achieved at
d1/d0 = d2/d0 = 0.9. Fig. 5 presents the optimal allocation
for the LFTR system. If the relays are close to the source, the
transmit power budget is equally distributed. If the relays are
closer to the destination, more power is allocated to the source.

Fig. 6 presents the OP for the LFOR system and a total
power budget ET/N0 = 15 dB and ET/N0 = 20 dB. Fig. 7
presents the power allocation for the source. If the relay
is close to the source, the total transmit power is shared
equally between source and relay. The closer the relay gets
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to the destination, the more transmit power is distributed
to the source. A reduction of the OPs can be achieved for
0.4 ≤ d1/d0 ≤ 0.9. The maximum gain of 0.8 orders of
magnitude is at d1/d0 = 0.9.

The advantage of the LFTR system is higher in comparison
with the LFOR system. For a total transmit power budget
ET = 15 dB or ET = 20 dB a minimum reduction of one
order of magnitude up to a maximum reduction of two orders
of magnitude for the OP can be achieved.

The maximum relative approximation error propagation
can be found for d1/d0 = d2/d0 = 0.9, because the scenario
probability PS,4 is maximal at this very situation. It is more
likely that both relays observe an error if they are far away
from the source and consequently the relative approximation
error of (16) has the biggest impact. Simulation results in
Fig. 3 and Fig. 4 show a maximum relative approximation error
propagation that merely totals to 15 % at d1/d0 = d2/d0 = 0.9.
For d1/d0 < 0.8 and d2/d0 < 0.8 the relative approximation
error propagation is negligible. Consequently, the approxima-
tion (21) is a good fit for the analytical OP calculation and the
desired power allocation.

VI. CONSLUSION

In this paper we have derived the OP for a LFTR system
and presented a power allocation strategy to minimize the OP.
First, we have determined the integral for the OP based on
the Slepian-Wolf source correlation theorem. Since an exact

closed-form expression of the OP cannot be easily achieved,
we have investigated the high-SNR behavior and solved the in-
tegral for the OP by an approximation. We have also proposed
an OPA strategy based on convex optimization to minimize the
OP for high-SNR behavior. A significant reduction of the OP
with the OPA can be achieved by up to 1.5 orders of magnitude
compared to EPD. We have compared the performance of the
LFTR and the LFOR system. With the same total transmit
power budget, the LFTR system outperforms the LFOR system
by at least one order of magnitude up to two orders of
magnitude.

The present study indicates that lossy forwarding tremen-
dously reduces the OP and therefore enhances robustness and
energy efficiency of mesh networks.
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