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Abstract—We consider the lossy transmission of a single
source over parallel additive white Gaussian noise channels with
independent quasi-static fading, which we term the lossy multi-
connectivity problem. We assume that only the decoder has access
to the channel state information. Motivated by ultra-reliable and
low latency communication requirements, we are interested in the
finite blocklength performance of the problem, i.e., the minimal
excess-distortion probability of transmitting k source symbols
over n channel uses. By generalizing non-asymptotic bounds by
Kostina and Verdú for the lossy joint source-channel coding
problem, we derive non-asymptotic achievability and converse
bounds for the lossy multi-connectivity problem. Using these
non-asymptotic bounds and under mild conditions on the fading
distribution, we derive approximations for the finite blocklength
performance in the spirit of second-order asymptotics for any
discrete memoryless source under an arbitrary bounded distor-
tion measure. Furthermore, in the achievability part, we analyze
the performance of a universal coding scheme by modifying
the universal joint source-channel coding scheme by Csiszár
and using a generalized minimum distance decoder. Our results
demonstrate that the asymptotic notions of outage probability
and outage capacity are in fact reasonable criteria even in the
finite blocklength regime. Finally, we illustrate our results via
numerical examples.

Index Terms—Parallel channels, Dispersion, 5G, Ultra-reliable
and low latency communication, Finite blocklength analysis,
Quasi-static fading, Joint source-channel coding

I. INTRODUCTION

In cellular communication for 5G systems, one is interested
in ultra-reliable and low latency communication (URLLC).
To gain insight for the wireless communication system for
5G, in this paper, using tools from finite blocklength informa-
tion theory, we characterize the fundamental limits of lossy
data transmission over parallel additive white Gaussian noise
(AWGN) channels with independent quasi-static fading. This
problem is also known as the multi-connectivity problem in
its lossless form [2]. Thus, in this paper, we term our problem
the lossy multi-connectivity problem.
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The main reason for considering quasi-static fading is that
for low-latency communication systems, the length of the data
packet is rather small and usually smaller than the channel
coherence time of fading channels. This observation was made
previously by Yang et al. [3]. The motivation for multi-
connectivity is mainly for the reliable communication over
fading channels, especially for the quasi-static fading channels
suitable for low-latency communication. If only one channel
is available and unfortunately, the channel is in deep fade
condition, then it is clear that nothing can be transmitted
reliably over the channel. However, when multiple channels
are available, if at least one channel is not in deep fade
condition, then some information can always be transmitted
reliably. Hence, multi-connectivity provides a flexible com-
munication framework that can trade diversity for multiplexing
via the multiple routes to the destination. Furthermore, multi-
connectivity can use different carrier frequencies, such that the
multiple copies of the same information can, in the best case,
be delivered in a single time slot.

To the best of our knowledge, existing works on quasi-
static fading channels mainly focus on outage analysis
with infinite signal to noise ratio (SNR) via the diversity-
multiplexing tradeoff (DMT) ([4], [5], [6]). For the lossless
multi-connectivity problem, the outage analysis was estab-
lished by Wolf et al. [2]. However, as pointed by Yang et
al. [3], the outage analysis is not necessarily a valid criterion
for low-latency communication without careful verification.
The main reason why one adopts the notion of outage analysis
for quasi-static fading channel is that the classical capacity
with vanishing error probability proposed by Shannon [7]
is zero for most commonly encountered quasi-static fading
channels [8, Chapter 5]. However, capacity itself is an asymp-
totic notion requiring infinite blocklength and thus contradicts
the need for low-latency communication. To fully understand
the finite blocklength performance of channel coding over
quasi-static fading channels, Yang et al. [3] adopted tools
from finite blocklength information theory for point-to-point
channels [9], [10], [11] and adapted the ideas to quasi-static
MIMO channels.

In this paper, in the spirit of [3], we provide a detailed
analysis for the lossy multi-connectivity problem using tools
from finite blocklength information theory [10], [12], [13] and
thus provide insights for the designers of future 5G URLLC
systems. Our lossy multi-connectivity problem is essentially a
lossy joint source channel coding (JSCC) problem where the
channel consists of parallel AWGN channels with independent
quasi-static fading.
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A. Related Work

For the AWGN channel, the finite blocklength performance
was characterized by Polyanskiy, Poor and Verdú [10], by
Hayashi [9] and by Tan and Tomamichel [14]. Subsequently,
the result was generalized to block fading channels by Polyan-
skiy and Verdú in [15]. Furthermore, for MIMO channel
with quasi-static fading, under mild conditions on the fading
distributions, the finite blocklength analysis was performed
by Yang et al. in [3]. In general, it was shown in [3] that
for quasi-static fading channels, the maximum number of
messages per channel use which can transmitted over n uses
of the quasi-static channel allowing average error probability
ε is given by the outage capacity [8, Chapter 5] plus a
remainder term which scales in the order of O(log n/n). Yang
et al. proved the interesting result by generalizing the κβ-
bound [10, Theorem 25] in the achievability part and the
meta-converse theorem [10, Theorem 30] in the converse part.
For the single input multiple output (SIMO) channel with
quasi-static Rayleigh fading, MolavianJazi and Laneman [16]
derived a similar result using information spectrum method for
both directions. For other works on finite blocklength analysis
for quasi-static fading channels, see [17] and the references
therein.

We also review existing works on the lossy source coding
(rate-distortion) problem dating back to Shannon [18]. The
error exponent, which characterizes the speed of exponen-
tial decay of the excess-distortion probability for the rate-
distortion problem, was characterized by Marton [19] for
any discrete memoryless source (DMS) under any bounded
distortion measure and by Ihara and Kubo [20] for any Gaus-
sian memoryless source (GMS) under the quadratic distortion
measure. In terms of second-order asymptotics, for any DMS
under any bounded distortion measure, the result was derived
by Ingber and Kochman [21] using method of types [22] and
a refined version of the type covering lemma [19]. Similar
results were also derived by Kostina and Verdú [12] for any
DMS under any bounded distortion measure and any GMS
under the quadratic distortion measure. Furthermore, Kostina
and Verdú [12] derived non-asymptotic achievability and con-
verse bounds using the so-called distortion-tilted information
density. Subsequently, Kostina and Verdú [13] also generalized
the results in [12] to derive the finite blocklength performance
of the lossy joint source-channel coding problem [18].

For the lossy multi-connectivity problem with two parallel
AWGN channels and quasi-static fading, Laneman et al. [23]
considered the source and channel diversity for multiple
settings of separate source-channel coding and joint source-
channel coding under the average quadratic distortion criterion
in the limit of high SNR. Note that, however, in this paper,
we are interested in the finite blocklength performance for the
lossy multi-connectivity problem for any value of SNR and
any finite number of parallel AWGN channels with indepen-
dent quasi-static fading under the excess-distortion probability
criterion.

B. Main Contributions

First, we derive non-asymptotic converse and achievability
bounds for the lossy multi-connectivity problem by gener-
alizing the corresponding results for the lossy joint source-
channel coding problem by Kostina and Verdú [13]. The
non-asymptotic bounds hold for any value of SNR and any
source distribution, discrete or continuous. In the expression
of the non-asymptotic bounds, we make use of the distortion-
tilted information density [12] and the fading information
density [24].

Second, we derive the second-order asymptotics of the lossy
multi-connectivity problem for discrete memoryless sources
under bounded distortion measures. These results provide
tight approximation for the finite blocklength performance.
Both the achievability and converse parts follow by applying
the Berry-Esseen theorem to our non-asymptotic bounds and
analyzing the remainder term judiciously. We remark that the
JSCC scheme used to prove our non-asymptotic achievability
bound is non-universal in the sense that the decoder requires
the source distribution, the channel lawand the channel state
information (CSI) to make a decision. Motivated by practical
universal communication systems, we adapt a universal joint
source-channel coding scheme dating back to Csiszár [25]
and used also by Wang, Ingber and Kochman [26] to our
lossy multi-connectivity setting. Inspired by [27], our JSCC
scheme combines unequal error protection [28] and modified
minimum distance decoding [29]. We show that our universal
scheme achieves the same second-order asymptotics as the
non-universal one and thus demonstrates that the knowledge
of the source distribution and the channel law at the decoder is
not necessary to achieve the optimal second-order performance
in the lossy multi-connectivity problem.

Finally, we demonstrate the benefit of multi-connectivity
numerically by comparing our results as the number of parallel
channels varies. We show that with multiple parallel channels,
the achievable excess-distortion probability P∗

e,k,n(P,D) (see
(7)) is significantly decreased.

C. Organization of the Rest of the Paper

The rest of the paper is organized as follows. In Section
II, we set up the notation and formulate our lossy multi-
connectivity problem. Subsequently, in Section III, we present
our main results: non-asymptotic bounds and second-order
asymptotics. In Section IV, we present numerical simulations
to illustrate our results. The proofs of second-order asymp-
totics are given in Section V. Finally, in Section VI, we
conclude the paper and discuss future research directions. For
the smooth presentation of our main results, we defer all other
proofs to the appendices.

II. PROBLEM FORMULATION

A. Notation

Random variables and their realizations are denoted in capi-
tal letters (e.g., X) and lower case letters (e.g., x), respectively.
All sets (e.g., alphabets of random variables) are denoted in
calligraphic font (e.g., X ). Let Xn := (X1, . . . , Xn) be a
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random vector of length n and xn a particular realization.
We use ∥xn∥ to denote the ℓ2 norm

√∑
i x

2
i . The set of

all probability distribution on X is denoted as P(X ) and the
set of all conditional probability distributions with the input
alphabet X and the output alphabet Y is denoted as P(Y|X ).
We use R, R+ and N to denote the sets of real numbers,
non-negative real numbers, and natural numbers, respectively.
Given any two integers a, b ∈ N 2, we use [a : b] to denote
the inclusive collection of all integers between a and b, i.e.,
[a : b] := {c : c ∈ N , a ≤ c ≤ b}. Furthermore, we use [a] to
denote the set [1 : a] for any integer a. We use In to denote
the n×n identity matrix. Given a real number a ∈ R, we use
|a|+ to denote max{a, 0}. Finally, all logarithms are natural
logarithms and we use standard asymptotic notation such as
O(·), o(·) and Θ(·) [30]. To be specific, for any two sequences
an and bn, we say an = O(bn) if lim supn→∞

∣∣∣an

bn

∣∣∣ < ∞, we
say an = o(bn) if limn→∞

an

bn
= 0 and we say an = Θ(bn)

if c1 ≤ limn→∞
an

bn
≤ c2 where c1 and c2 are two constants.

B. System Model

In this paper, as shown in Figure 1, we consider the lossy
transmission of a single memoryless source over parallel
AWGN channels with independent quasi-static fading. We as-
sume that the memoryless source is generated i.i.d. according
to a distribution PS defined on the alphabet S, i.e., for any
integer k ∈ N and any sk ∈ Sk, PSk(sk) =

∏
i∈[k] PS(si).

Furthermore, we assume that there are in total Ψ parallel
AWGN channels with independent quasi-static fading. For
each channel indexed by t ∈ [Ψ], the additive noise Zn

t

is generated i.i.d. according to the normal distribution, i.e.,
N (0, 1). Furthermore, the fading coefficient At ∈ A for each
channel (t ∈ [Ψ]) remains unchanged in n channel uses and
the fading parameters {At}t∈[Ψ] are distributed i.i.d. according
to a fading distribution PA. Thus, the channel law for each
independent channel indexed by t ∈ [Ψ] is given by

Y n
t = AtX

n
t + Zn

t , t ∈ [Ψ]. (1)

Throughout the paper, we assume a maximal power constraint
P , i.e., for any codewords {xn

t }t∈[Ψ] for parallel channels,
1
n

∑
t∈[Ψ] ∥xn

t ∥2 ≤ P . Furthermore, we assume that only
the receiver has access to CSI, i.e., {At}t∈[Ψ]. Given the
channel outputs {Y n(t)}t∈[Ψ] and CSI {At}t∈[Ψ], the decoder
estimates the source sequence as Ŝk, which takes values in the
alphabet Ŝk. To measure the performance, we define the one-
shot distortion measure d : S×Ŝ → [0,∞) and its multi-letter
version d(sk, ŝk) := 1

k

∑
i∈[k] d(si, ŝi) for any pair of source

sequence sk ∈ Sk and the reproduced sequence ŝk ∈ Ŝk.
To formally define a code for our problem, for each t ∈

[Ψ], given any Pt ∈ R+, let R(n, Pt) be the collection of all
length-n sequences of real numbers with power Pt, i.e.,

R(n, Pt) := {xn ∈ Rn : ∥xn∥2 = nPt}. (2)

Definition 1. An (k, n, P )-code consists of
• Ψ encoders

ft : Sk → R(n, Pt), ∀ t ∈ [Ψ], and (3)

Sk

-

-

Encoder f1

Encoder f2

-����
+

-����
+
?

Zn
2

?

Zn
1

Xn
2

Xn
1 Y n

1 = A1X
n
1 + Zn

1

Y n
2 = A2X

n
2 + Zn

2

-
-

Decoder ϕ

? ?

A1 A2

- Ŝk

Fig. 1: System model for the lossy multi-connectivity problem
with two parallel channels (i.e., Ψ = 2). We are interested in
the finite blocklength performance of lossy transmission over
parallel AWGN channels with independent quasi-static fading.
We assume that only the decoder has access to the channel
state information, i.e., the fading parameters {At}t∈[Ψ].

• a decoder

ϕ : RnΨ ×AΨ → Ŝk, (4)

for some power allocation vector {Pt}t∈[Ψ] satisfying∑
t∈[Ψ]

Pt ≤ P. (5)

Given an (k, n, P )-code, the source estimate can be ex-
pressed as Ŝk = ϕ({Y n

t , At}t∈[Ψ]) and the excess-distortion
probability with respect to a distortion level D is defined as
follows:

Pe,k,n(P,D) := Pr
{
d(Sk, Ŝk) > D

}
. (6)

Given (k, n, P ) and D, the optimal performance is evaluated
by the minimal excess-distortion probability of any (k, n, P )-
code with respect to the distortion level D, i.e.,

P∗
e,k,n(P,D) := inf{ε : ∃ an (k, n, P )−code s.t.

Pe,k,n(P,D) ≤ ε}. (7)

Symmetrically, we let k∗(n, ε, P,D) denote the maximum
number of source symbols that can be transmitted over n uses
of parallel AWGN channels with maximum power constraint
P and independent quasi-static fading so that the excess-
distortion probability Pe,k,n(P,D) is bounded above by ε, i.e.,

k∗(n, ε, P,D) := sup{k : ∃ an (k, n, P )−code s.t.

Pe,k,n(P,D) ≤ ε}. (8)

In this paper, we will present non-asymptotic bounds on
P∗
e,k,n(P,D) and second-order asymptotics for P∗

e,k,n(P,D)
and k∗(n, ε, P,D).

III. MAIN RESULTS

A. Preliminaries

Recall the definitions of the rate-distortion function
R(PS , D) [18], [19] and the distortion-tilted information den-
sity [31], [12], i.e.,

R(PS , D) := inf
PŜ|S :E[d(S,Ŝ)]≤D

I(S; Ŝ), (9)

ȷ(s,D) := − logE[exp(λ∗D − d(s, Ŝ))], (10)

λ∗ := −∂R(PS , D)

∂D
, (11)
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where the expectation in (10) is with respect to the uncondi-
tional distribution P ∗

Ŝ
, which is induced by the optimal test

channel P ∗
Ŝ|S for (9) and the source distribution PS .

The definition of the distortion-tilted information density in
(10) can also be extended to multi-letter case and thus we can
define ȷ(sk, D) for any length-k source sequence sk. It was
shown in [12] that for any memoryless source, we have

ȷ(sk, D) =
∑
i∈[k]

ȷ(si, D). (12)

Recall the channel law in (1). For each t ∈ [Ψ], the
conditional distribution of the channel output Y n

t given the
input Xn

t and the fading parameter At is a product of normal
distributions, i.e., for any (xn

t , at, y
n
t ),

PY n
t |Xn

t At
(ynt |xn

t , at) =
∏
i∈[n]

1√
2π

exp

(
− (yt,i − atxt,i)

2

2

)
.

(13)

Now, let {QY n
t |At

}t∈[Ψ] be arbitrary conditional distributions
and define the fading information densities [16, Eq. (9)] as

ı̃(xn
t ; y

n
t |at) := log

PY n
t |Xn

t At
(ynt |xn

t , at)

QY n
t |At

(ynt |at)
. (14)

For simplicity, throughout the paper, we let P :=
(P1, . . . , PΨ) denote the power allocation vector and use
A := (A1, . . . , AΨ) to denote fading parameters. Further-
more, we let Pmax(P ) := {P :

∑
t∈[Ψ] Pt ≤ P} and

Peq(P ) := {P :
∑

t∈[Ψ] Pt = P} be the set of power
allocation vectors satisfying the maximum and equal power
constraints respectively.

B. Non-Asymptotic Bounds

Our first result is a lower bound on the excess-distortion
probability for any (k, n, P )-code.

Theorem 1. Given a distortion level D, any (k, n, P )-code
satisfies that

Pe,k,n(P,D)

≥ inf
(P,{P

Xn
t |Sk}t∈[Ψ]):

P∈Pmax(P ), and ∀ t∈[Ψ]

P
Xn

t |Sk∈P(R(n,Pt)|Sk)

sup
γ>0

(
− exp(−nγ)

+ Pr

{ ∑
t∈[Ψ]

ı̃(Xn
t ;Y

n
t |At) ≤ ȷ(Sk, D)− nγ

})
. (15)

We remark that the proof of Theorem 1 is similar to [13,
Theorem 1] and omitted for simplicity. Note that in the right
hand side of (15), the infimum over all stochastic encoders
PXn

t |Sk , t ∈ [Ψ] makes the lower bound difficult to calculate.
However, the following lemma states that for any AWGN
channel with quasi-static fading, the right hand side of (15)
does not depend on encoders under particular choices of
auxiliary distributions {QY n

t |At
}t∈[Ψ].

To present the lemma, for each t ∈ [Ψ], given the power Pt

and the fading coefficient At, define

Ln
t (Pt, At, Z

n
t ) :=

n

2
log(1 + PtA

2
t )

+

∑
j∈[n] PtA

2
t (1− Z2

t,j) + 2At

√
PtZt,j

2(1 + PtA2
t )

. (16)

Lemma 2. For each t ∈ [Ψ], given Pt and at, choose the
distribution QY n

t |At
such that

QY n
t |At

(·|at) ∼ N (0, (1 + Pta
2
t )In). (17)

Then, for any t ∈ [Ψ], channel input xn
t and fading parameter

at, under the distribution of PY n
t |Xn

t At
(·|xn

t , at) (see (13)), the
distribution of the fading information density ı̃(xn

t ;Y
n
t |at) de-

pends on xn
t only through its power Pt =

∥xn
t ∥

2

n . Furthermore,
ı̃(xn

t ;Y
n
t |At) has the same distribution as Ln

t (Pt, At, Z
n
t ).

The proof of Lemma 2 follows from spherical symmetry
and is given in Appendix A.

Invoking Theorem 1 and Lemma 2, we can now obtain the
following non-asymptotic converse bound.

Corollary 3. Given a distortion level D, any (k, n, P )-code
satisfies that

Pe,k,n(P,D) ≥ inf
P∈Pmax(P )

sup
γ>0

(
− exp(−nγ)

+ Pr

{ ∑
t∈[Ψ]

Ln
t (Pt, At, Z

n
t ) ≤ ȷ(Sk, D)− nγ

})
. (18)

In the following, we present a non-asymptotic achievability
bound by generalizing [13, Theorems 7 and 8] to our lossy
multi-connectivity setting. Recall the definition of Ln

t (·) in
(16) and that P ∗

S is the distribution induced by the optimal
test channel for the rate-distortion function R(PS , D) (see (9)).
Given any source sequence sk, define the non-excess-distortion
probability

Φ(sk, D) := Pr
P∗k

Ŝ

{d(sk, Ŝk) ≤ D}. (19)

Finally, for simplicity, let

L̃n
t (Pt, At, Z

n
t ) := Ln

t (Pt, At, Z
n
t )− log

1 + PtA
2
t√

1 + 2PtA2
t

. (20)

Theorem 4. Given any distortion level D, there exists an
(k, n, P )-code such that

Pe,k,n(P,D) ≤ inf
P∈Pmax(P )

inf
γ>0

{
exp(−nγ + 1)

+ E
[
exp

(
−
∣∣∣∣ ∑
t∈[Ψ]

L̃n
t (Pt, At, Z

n
t )− log

nγ

Φ(Sk, D)

∣∣∣∣+)]}.
(21)

The proof of Theorem 4 is given in Appendix B. We adapt
the joint source-channel coding scheme in [13] which consists
of the concatenation of source and channel codes. We remark
that the coding scheme to prove Theorem 4 is non-universal
since the decoder needs to know the exact channel law and
the source distribution.
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We remark that the result in Theorem 4 holds for arbitrary
source distributions (discrete and continuous). As we will
show later, using non-asymptotic bounds in Corollary 3 and
Theorem 4, we can derive the second-order asymptotics for our
lossy multi-connectivity problem, which provides tight approx-
imation for P∗

e,k,n(P,D) (see (7)) and k∗(n, ε, P,D) (see (8)).
For the case of lossless transmission, the results in Corollary
3 and Theorem 4 holds with ȷ(Sk, D) and Φ(Sk, D) replaced
by logP k

S (S
k).

C. Second-Order Asymptotics for a DMS

In this subsection, we consider any discrete memoryless
source under arbitrary bounded distortion measure, i.e., S and
Ŝ are finite and max(s,ŝ)∈S×Ŝ d(s, ŝ) < ∞. Before present-
ing the main theorem, we first recall and define necessary
quantities. Recall the definitions of the distortion-dispersion
function and the third absolute moment of the distortion-tilted
information density [12], i.e.,

Vs(PS , D) := Var[ȷ(S,D)], (22)

T (PS , D) := E[|ȷ(S,D)3|]. (23)

Furthermore, given power allocation vector P and fading
parameters A, define

U1(P,A) :=
∑
t∈[Ψ]

1

2
log(1 + PtA

2
t ), (24)

U2(P,A) :=
∑
t∈[Ψ]

PtA
2
t (PtA

2
t + 2)

2(1 + PtA2
t )

, (25)

U3(P,A) :=
∑
t∈[Ψ]

√
2P 2

t A
4
t (7PtA

2
t + 12)

(
√
2(1 + PtA2

t ))
3

. (26)

For our result to hold, we need the following assumptions:
(i) Given source distribution PS and distortion level D,

Vs(PS , D) > 0, T (PS , D) < ∞; (27)

(ii) Given any P ∈ Peq(P ),

EA

[
U3(P,A)

U2(P,A)

]
< ∞, EA

[(
U3(P,A)

U2(P,A)

)2]
< ∞. (28)

Theorem 5. Suppose k = Θ(n). Under the assumptions
in (27) and (28), the optimal excess-distortion probability
satisfies that

P∗
e,k,n(P,D)−O

(
log n√

n

)
= inf

P∈Peq(P )
EA

[
Q

(
nU1(P,A)− kR(PS , D)√
kVs(PS , D) + nU2(P,A)

)]
. (29)

The proof of Theorem 5 is given in Sections V-A to V-C.
Several remarks are in order.

First, the result in Theorem 5 follows by applying the Berry-
Esseen theorem to our non-asymptotic bounds in Corollary 3
and Theorem 4. Since the result in Theorem 4 is based on a
non-universal JSCC scheme, we also prove the achievability
part using a universal JSCC scheme in Section V-D, which
uses unequal error protection [28] and modified minimum

distance decoding [27]. We remark that the additional require-
ment EPA

[
1{A>0}

A

]
< ∞ and EPA

[A] < ∞ is needed in order
for our universal JSCC scheme to achieve the performance in
Theorem 5.

Second, as can be seen in Theorem 5, the excess-distortion
probability is dominated by the first term, which can be
understood as the outage probability in the second-order sense.
Actually, using [3, Lemma 17], we have

inf
P∈Peq(P )

EA

[
Q

(
nU1(P,A)− kR(PS , D)√
kVs(PS , D) + nU2(P,A)

)]
= Pout(k, n,D) +O

(
1

n

)
, (30)

where the outage probability is defined as

Pout(k, n,D) := inf
P∈

Peq(P )

Pr
{
nU1(P,A) ≤ kR(PS , D)

}
. (31)

Some interesting observations can be made. Theorem 5
indicates that the optimal excess-distortion probability is dom-
inated by the second-order outage probability expressed using
the Q(·) function and the linear combination of dispersion
functions kVs(PS , D) + nU2(P,A). However, (30) shows
that with negligible loss of performance (for relatively large
blocklength), it suffices to use the outage probability directly.
Therefore, our results indicate that the outage probability is
still a valid criterion even in finite blocklength. In general, the
optimal power allocation to minimize the outage probability
is unknown. However, for parallel fading channels with i.i.d.
Rayleigh fading, from [8, Exercise 5.17], we know that the
outage probability Pout(k, n,D) is achieved by equal power
allocation, i.e., Pt =

P
Ψ for all t ∈ [Ψ].

Finally, we comment a bit on the assumptions for Theorem
5. The assumption in (28) is mild since it is satisfied by many
common fading distributions, such as the Rayleigh fading [24].
Furthermore, the assumption that k = Θ(n) is valid since we
can show that by allowing any non-vanishing excess-distortion
probability, the asymptotic ratio of k

n is finite and positive.
Using Theorem 5 and [3, Lemma 17], we obtain an ap-

proximation for k∗(n, ε, P,D) in (8). To present the result,
given any maximal power constraint P ∈ R+ and any excess-
distortion probability ε ∈ (0, 1), define the outage capacity for
our lossy multi-connectivity problem as

CMC
out (P,D, ε) := sup

{
r ∈ R+ : Pout(r, 1, D) ≤ ε

}
. (32)

Corollary 6. Under conditions of Theorem 5, for any con-
tinuously differentiable fading distribution PA, under any
maximal power constraint P ∈ R+ and any excess-distortion
probability ε ∈ (0, 1), we have

k∗(n, ε, P,D) = nCMC
out (P,D, ε) +O(log n). (33)

The proof of Corollary 6 is provided in Section V-E. We
remark that Corollary 6 implies that the dispersion for our
lossy multi-connectivity problem is zero, which is consistent
with existing literatures [3], [16]. Furthermore, our result in
Corollary 6 justifies that the asymptotic notion of outage
capacity, used extensively in wireless communication systems
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(a) BMS with distortion level D = 0.1
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(b) GMS with distortion level D = 0.5

Fig. 2: Power allocation: excess-distortion probability for lossy transmission over Ψ = 2 parallel AWGN channels with
independent quasi-static Rayleigh fading for different power allocations α = [α1, α2] with power constraint P = 5.

with quasi-static fading, is actually an accurate performance
criterion even in the finite blocklength setting.

We remark that the results in Theorem 5 and Corollary 6 can
also be established for Gaussian memoryless sources under
quadratic distortion measures by using our non-asymptotic
converse bounds. The converse proof remains the same and
the achievability part can be done by adapting the universal
coding scheme in [27] to the lossy multi-connectivity setting
considered in the present paper.

IV. NUMERICAL SIMULATION

In this section, we illustrate our results in Corollary 3
and Theorem 4 via numerical simulations. We consider
Rayleigh fading with scale parameter one, i.e., each fading
parameter follows the same Rayleigh distribution PA(at) =
at exp

(
−a2t/2

)
for any at ∈ R+. We are interested in the

finite blocklength performance of the lossy transmission of
the following two memoryless sources over parallel AWGN
channels with independent quasi-static Rayleigh fading:

• Binary memoryless source (BMS) with bias p under
Hamming distortion measure. The source alphabet is
S = {0, 1} and the source distribution is PS(0) = p
and PS(1) = 1 − p. For any two sequences sk and
ŝk, the Hamming distortion is defined as d(sk, ŝk) =
1
k

∑
i∈[k] 1{si ̸= ŝi}.

• GMS under the quadratic distortion measure. The source
distribution is N (0, σ2

S) and the quadratic distortion
measure for any two sequences sk and ŝk is defined as
d(sk, ŝk) = 1

k

∑
i∈[k](si − ŝi)

2.
In the following, we assume a maximal power constraint

of P = 5, a fixed rate of source symbols per channel use of
k/n = 1 and up to three parallel AWGN channels, i.e., Ψ ≤ 3.

In Figure 2, we plot the non-asymptotic bounds in Corol-
lary 3 (dashed lines) and Theorem 4 (solid lines) via Monte-
Carlo simulations for the case of Ψ = 2 and different power
allocations P = [P1, P2] = [α1, α2]P where (α1, α2) ∈ R+

satisfying α1 + α2 ≤ 1. It is shown that the equal power
allocation (i.e., α1 = α2 = 0.5) achieves the smallest excess-
distortion probabilities in both the achievability and converse
parts. We have verified that this is true for any possible values
of (α1, α2) ∈ R+ such that α1+α2 ≤ 1 and thus conclude that
the equal power allocation is optimal in the finite blocklength
regime1. Hence, in further numerical simulations, we plot our
results for the equal power allocation only.

In Figure 3, for the case of Ψ ∈ [3], we plot the non-
asymptotic achievability bound in Theorem 4 (solid lines),
the second-order asymptotics in Theorem 5 (dotted lines),
and outage probability in (31) (dash-dotted lines) versus the
blocklength. It can be observed that the achievable excess-
distortion probability decreases significantly as the number of
parallel channels increases and thus demonstrates the benefits
of multi-connectivity in the finite blocklength setting. The
same result is true for the converse result (see Corollary 3).

V. PROOF OF SECOND-ORDER ASYMPTOTICS

A. Preliminaries

Using the definitions in (22), and (24) to (26), define the
average dispersion function and the third-absolute moment as

V
(P,A)
k+nΨ :=

kVs(PS , D) + nU2(P,A)

k + nΨ
, (34)

T
(P,A)
k+nΨ :=

kT (PS , D) + nU3(P,A)

k + nΨ
. (35)

Furthermore, define the following three quantities

Ω1(k, n, P ) := sup
P∈Peq(P )

EA

[
6T

(P,A)
k+nΨ

(√
V

(P,A)
k+nΨ

)−3
]
, (36)

Ω2(k, n, P ) := sup
P∈Peq(P )

EA

[(√
V

(P,A)
k+nΨ

)−1
]
, (37)

1The simulations included a great number of power allocations, which are
omitted in Fig. 2 for clarity.
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(b) GMS with distortion level D = 0.5

Fig. 3: Multiple-links: excess-distortion probability for lossy transmission over parallel AWGN channels with independent
quasi-static Rayleigh fading channel for equal power allocation with P = 5 and Ψ ∈ [3].

Ω3(k, n, P ) := sup
P∈

Peq(P )

EA

[
U1(P,A)

(√
V

(P,A)
k+nΨ

)−1
]
. (38)

B. Converse Proof

In this section, we present the converse proof of our main
results. Given a distortion level D, similar to the defini-
tion of P∗

e,k,n(P,D) in (7), we let P∗,eq
e,k,n(P,D) denote the

corresponding minimal excess-distortion probability for any
(k, n, P )-code with equal power constraint. It can be easily
shown that

P∗
e,k,n(P,D) ≥ P∗,eq

e,k,n+1(P,D) (39)

since for any (k, n, P )-code with strict inequality in (5), we
can always construct a (k, n + 1, P )-code with equality in
(5). In this section, we will first derive a lower bound on
P∗,eq
e,k,n(P,D) and then use (39) to establish a lower bound

for P∗
e,k,n(P,D). Furthermore, the results in Theorem 1 and

Corollary 3 hold also with equal power constraint as can be
gleaned in their proofs. For ease of notation, let

L(Pt, At, Z
n
t ) :=

∑
j∈[n] PtA

2
t (1− Z2

t,j) + 2At

√
PtZt,j

2(1 + PtA2
t )

.

(40)

In the following, we first bound the dominant term in Corol-
lary 3. Using the definitions of Ln

t (Pt, At, Z
n
t ) in (16) and

ȷ(Sk, D) in (12), for any power allocation vector P ∈ Peq(P )
and γ > 0, we have that

Pr

{ ∑
t∈[Ψ]

Ln
t (Pt, At, Z

n
t ) ≤ ȷ(Sk, D)− nγ

}

= Pr

{ ∑
t∈[Ψ]

(n
2
log(1 + PtA

2
t ) + L(Pt, At, Z

n
t )
)

≤
∑
i∈[k]

ȷ(Si, D)− nγ

}
(41)

= Pr

{∑
i∈[k]

(
ȷ(Si, D)−R(PS , D)

)
−
∑
t∈[Ψ]

L(Pt, At, Z
n
t )

≥
∑
t∈[Ψ]

n

2
log(1 + PtA

2
t )−kR(PS , D)+nγ

}
. (42)

Using the fact that E[ȷ(Si, D)] = R(PS , D) [12, Prop-
erty 1], we conclude that {ȷ(Si, D) − R(PS , D)}i∈[k] and{

PtA
2
t (1−Z2

t,j+2At

√
PtZt,j)

2(1+PtA2
t )

}
t∈[Ψ],j∈[n]

forms a sequence of

(k + nΨ) independent random variables with zero mean.
Applying the Berry-Esseen theorem [32], [33] (see also [34,
Chapter 1]) to the result in (42), we obtain that

EA

[∣∣∣∣Pr{ ∑
t∈[Ψ]

Ln
t (Pt, At, Z

n
t ) ≤ ȷ(Sk, D)− nγ

}

−Q

(∑
t∈[Ψ]

n
2 log(1 + PtA

2
t )− kR(PS , D) + nγ√

(k + nΨ)V
(P,A)
k+nΨ

)∣∣∣∣]

≤ EA

[
6T

(P,A)
k+nΨ

(
V

(P,A)
k+nΨ

)−3/2√
(k + nΨ)

]
. (43)

Now, using Corollary 3 and the result in (43), by choosing
γ = logn

n , we have

P∗,eq
e,k,n(P,D) +

1

n

≥ inf
P∈Peq(P )

{
EA

[
Q

(
nU1(P,A)− kR(PS , D) + log n√

(k + nΨ)V
(P,A)
k+nΨ

)

−
6T

(P,A)
k+nΨ

(
V

(P,A)
k+nΨ

)−3/2√
(k + nΨ)

]}
(44)

≥ inf
P∈Peq(P )

EA

[
Q

(
nU1(P,A)− kR(PS , D) + log n√

(k + nΨ)V
(P,A)
k+nΨ

)]

− sup
P∈Peq(P )

EA

[
6T

(P,A)
k+nΨ

(
V

(P,A)
k+nΨ

)−3/2√
(k + nΨ)

]
(45)
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= inf
P∈Peq(P )

EA

[
Q

(
nU1(P,A)− kR(PS , D) + log n√

(k + nΨ)V
(P,A)
k+nΨ

)]

− Ω1(k, n, P )√
(k + nΨ)

(46)

= inf
P∈Peq(P )

EA

[
Q

(
nU1(P,A)− kR(PS , D) + log n√

(k + nΨ)V
(P,A)
k+nΨ

)]

+O
( 1√

n

)
, (47)

where (46) follows from the definition of Ω1(k, n, P ) in
(36) and (47) follows since Ω1(k, n, P ) = O(1) from the
assumptions of Theorem 5.

Combining (39) and (46), we obtain that

P∗
e,k,n(P,D)

≥ P∗,eq
e,k,n+1(P,D) (48)

≥ O
( 1√

n+ 1

)
+ inf

P∈Peq(P )

EA

[
Q

(
(n+ 1)U1(P,A)− kR(PS , D) + log(n+ 1)√

(k + (n+ 1)Ψ)V
(P,A)
k+(n+1)Ψ

)]
(49)

≥ inf
P∈Peq(P )

EA

[
Q

(
nU1(P,A)− kR(PS , D) + log n√

(k + nΨ)V
(P,A)
k+nΨ

)

− U1(P,A) + log(1 + 1/n)√
(k + nΨ)V

(P,A)
k+nΨ

]
+O

( 1√
n

)
(50)

= inf
P∈Peq(P )

EA

[
Q

(
nU1(P,A)− kR(PS , D) + log n√

(k + nΨ)V
(P,A)
k+nΨ

)]

− Ω3(k, n, P )√
k + nΨ

+O
( 1√

n

)
(51)

= inf
P∈Peq(P )

EA

[
Q

(
nU1(P,A)− kR(PS , D) + log n√

(k + nΨ)V
(P,A)
k+nΨ

)]

+O
( 1√

n

)
, (52)

≥ inf
P∈Peq(P )

EA

[
Q

(
nU1(P,A)− kR(PS , D)√

(k + nΨ)V
(P,A)
k+nΨ

)]

− Ω2(k, n, P ) log n√
k + nΨ

+O
( 1√

n

)
(53)

= inf
P∈Peq(P )

EA

[
Q

(
nU1(P,A)− kR(PS , D)√

(k + nΨ)V
(P,A)
k+nΨ

)]

+O
( log n√

n

)
, (54)

where (50) follows from [13, Eq. (255)] which states that
Q(x + a) ≥ Q(x) − a√

2π
≥ Q(x) − a for any x and any

a ≥ 0, (51) follows from the definition of Ω3(k, n, P ) in
(38) and the fact that log(1+1/n)√

(k+nΨ)V
(P,A)
k+nΨ

≤ log 2√
kV(PS)

= O( 1√
n
)

for any n ≥ 1 since k = Θ(n), and (52) follows since
Ω3(k, n, P ) = O(1) similarly to (47); (53) follows similarly
to (50) and using the definition of Ω2(·) in (37), and (54)

follows since Ω2(k, n, P ) = O(1) according to the assumption
of Theorem 5.

C. Achievability Proof

For simplicity, in the following, we use Z to denote
{Zn

t }t∈[Ψ] and similarly z. In the achievability proof, the
following lemma [12, Lemma 2] is important. Recall the
definitions of ȷ(s,D) in (10) and Φ(sk, D) in (19).

Lemma 7. For any DMS under any bounded distortion
measure, there exists constants c1, c2, c3 such that

Pr

{
log

1

Φ(Sk, D)
≤
∑
i∈[k]

ȷ(Si, D) + (c1 − 0.5) log k + c2

}
≥ 1− c3√

k
. (55)

Recall the definition of L̃n
t (·) in (20). For simplicity, let

Υ1(P,A,Z, Sk, D) :=
∑
t∈[Ψ]

L̃n
t (Pt, At, Z

n
t )− log n

− log γ − log
1

Φ(Sk, D)
, (56)

Υ(P,A,Z, Sk, D) := Υ1(P,A,Z, Sk, D) + log
1

Φ(Sk, D)

−Υ2(S
k, D), (57)

where

Υ2(S
k, D) :=

∑
i∈[k]

ȷ(Si, D) + (c1 − 0.5) log k + c2. (58)

Furthermore, for any power vector P, define the set:

Tk,n(P) :=
{
(a, z, sk) : Υ(P,a, z, sk, D) ≥ logn

}
. (59)

Using the result in Lemma 7, and weakening the result in
Theorem 4 by letting γ = logn+1

n , we obtain that there exists
an (k, n, P )-code such that for any P ∈ Pmax(P ),

Pe,k,n(P,D)

≤ E
[
exp

(
−
∣∣Υ1(P,A,Z, Sk, D)

∣∣+)]+ 1

n
(60)

≤ E
[
exp

(
−
∣∣Υ(P,A,Z, Sk, D)

∣∣+)
× 1

{
log

1

Φ(Sk, D)
≤ Υ2(S

k, D)

}]
+ Pr

{
log

1

Φ(Sk, D)
> Υ2(S

k, D)

}
+

1

n
(61)

≤ E
[
exp

(
−
∣∣Υ(P,A,Z, Sk, D)

∣∣+)]+ 1

n
+

c3√
k

(62)

≤ 1

n
Pr{(A,Z, Sk) ∈ Tk,n(P)}

+ Pr
{
(A,Z, Sk) /∈ Tk,n(P)

}
+

1

n
+

c3√
k

(63)

≤ 2

n
+

c3√
k
+ Pr

{
(A,Z, Sk) /∈ Tk,n(P)

}
, (64)

where (61) follows since i) Υ(P,A,Z, Sk, D) ≤
Υ1(P,A,Z, Sk, D) if log 1

Φ(Sk,D)
≤ Υ2(S

k, D)
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and exp(−|x|+) is non-increasing in x, and ii)
exp(−|x|+) ≤ 1 for any x (recall that |x|+ = max{0, x}),
(62) follows from Lemma 7, and (63) follows since
E[exp(−|X|+)] ≤ 1

a Pr{X ≥ log a} + Pr{X ≤ log a} for
any a ≥ 1.

In the remaining part of this subsection, we will upper
bound the third term in (64). For simplicity, define the fol-
lowing function of power allocation vector P and the fading
vector A,

B1(P,A) :=
∑
t∈[Ψ]

log
1 + PtA

2
t√

1 + 2PtA2
t

+ (c1 − 0.5) log k

+ c2 + 2 log n+ log γ. (65)

For ease of following analysis, let

C(n, k) := B1(P,A)−
∑
t∈[Ψ]

log
1 + PtA

2
t√

1 + 2PtA2
t

. (66)

Then, using the definitions of Ui(P,A) for i ∈ [3] in (24) to
(26) and applying the Berry-Esseen theorem similarly to (43),
we have that

Pr
{
(A,Z, Sk) /∈ Tk,n(P)

}
= inf

P∈Pmax(P )
Pr

{∑
i∈[k]

ȷ(Si, D)−
∑
t∈[Ψ]

Ln
t (Pt, At, Z

n
t )

−B1(P,A) ≥ 0

}
(67)

≤ inf
P∈Peq(P )

Pr

{(∑
i∈[k]

(
ȷ(Si, D)−R(PS , D)

)
−
∑
t∈[Ψ]

(
Ln
t (Pt, At, Z

n
t )−

n

2
log(1 + PtA

2
t )
))

≥ nU1(P,A)− kR(PS , D)−B1(P,A)

}
(68)

≤ inf
P∈

Peq(P )

EA

[
Q

(
nU1(P,A)− kR(PS , D)−B1(P,A)√

(k + nΨ)V
(P,A)
k+nΨ

)]

+ EA

[
6T

(P,A)
k+nΨ

(
V

(P,A)
k+nΨ

)−3/2

√
k + nΨ

]
(69)

≤ inf
P∈

Peq(P )

EA

[
Q

(
nU1(P,A)− kR(PS , D)−B1(P,A)√

(k + nΨ)V
(P,A)
k+nΨ

)]

+ sup
P∈Peq(P )

EA

[
6T

(P,A)
k+nΨ

(
V

(P,A)
k+nΨ

)−3/2

√
k + nΨ

]
(70)

≤ inf
P∈

Peq(P )

EA

[
Q

(
nU1(P,A)− kR(PS , D)− C(n, k)√

(k + nΨ)V
(P,A)
k+nΨ

)

+

∑
t∈[Ψ] log

1+PtA
2
t√

1+2PtA2
t√

(k + nΨ)V
(P,A)
k+nΨ

]
+

Ω1(k, n, P )√
k + nΨ

(71)

≤ inf
P∈

Peq(P )

EA

[
Q

(
nU1(P,A)− kR(PS , D)− C(n, k)√

(k + nΨ)V
(P,A)
k+nΨ

)]

+
Ω1(k, n, P ) + Ω3(k, n, P )√

k + nΨ
(72)

= inf
P∈

Peq(P )

EA

[
Q

(
nU1(P,A)− kR(PS , D) +O(log n)√

(k + nΨ)V
(P,A)
k+nΨ

)]

+O

(
1√
n

)
(73)

≤ inf
P∈

Peq(P )

EA

[
Q

(
nU1(P,A)− kR(PS , D)√

(k + nΨ)V
(P,A)
k+nΨ

)]
+O

(
log n√

n

)
,

(74)

where (71) follows from the definitions of Ω1(k, n, P ) in (36),
C(n, k) in (66) and by applying [13, Eq. (255)], (72) follows
from the fact that log 1+PtA

2
t√

1+2PtA2
t

≤ 1
2 log(1 + PtA

2
t ) for any

t ∈ [Ψ] and the definition of Ω3(k, n, P ) in (38), (73) follows
since Ω1(k, n, P ) = O(1) and Ω3(k, n, P ) = O(1) according
to the assumptions in Theorem 5, and (74) follows by applying
[13, Eq. (255)] similarly to (53) and (54).

D. Universal Achievability Coding Scheme

In this subsection, we present a universal JSCC scheme,
which can achieve the same second-order asymptotics as
our non-universal counterpart presented in Section V-C. The
JSCC scheme considered here dates back to Csiszár [25]
who proposed a JSCC scheme consisting of unequal error
protection and method of types to derive the error exponent
for the JSCC problem. We adapted the idea to our setting by
using a modified minimum distance decoder.

1) Notation for Method of Types: Given a length-k se-
quence Sk, we use P̂Sk to denote its type (empirical dis-
tribution). The collection of all types on Sk is denoted as
Pk(S). For any type Q ∈ Pk(S), we use TQ to denote
the type class, i.e., all the length-k sequences such that
P̂Sk = Q. For simplicity, we assume that the types in Pk(S)
are ordered, i.e., Pk(S) = {Qi}i∈|Pk(S)| and each index
i ∈ [|Pk(S)|] is associated with a type Qi. It is known that [22]
|Pk(S)| ≤ (k + 1)|S|.

2) JSCC Scheme: Let {Mi}i∈[|Pk(S)|] be a sequence of
integers to be determined. Furthermore, define the set

D := {(r1, r2) ∈ R2
+ : r1 ∈ [|Pk(S)|], r2 ∈ [Mr1 ]}. (75)

Codebook generation: For each i ∈ [|Pk(S)|],
generate Mi independent source codewords Ŝi :=
{Ŝk(i, 1), . . . , Ŝk(i,Mi)}, each i.i.d. according to P ∗

Ŝ
.

Furthermore, for each i ∈ [|Pk(S)|] and t ∈ [Ψ], generate Mi

independent channel codewords {Xn
t (i, 1), . . . , X

n
t (i,Mti)},

each according to the uniform distribution over a sphere with
radius

√
nPt.

Encoding: Given Sk, for each t ∈ [Ψ], the encoder ft
transmits Xn

t (I, J) if the type index of the source sequence
is I (i.e., Sk ∈ TQI ) and the index minimizing the distortion
between the source sequence and the source codewords in the
i-th subcodebook Si is J , i.e.,

J = argmin
j̃∈[1:MI ]

d(Sk, Ŝk(I, j̃)). (76)
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Decoding: Fix a threshold γk,n to be specified. Given the
channel outputs {Y n

t }t∈[Ψ], the decoder ϕ outputs source
estimate Ŝk(Î , Ĵ) if (Î , Ĵ) are the unique pair such that∑

t∈[Ψ]

ı̃(Xn
t (Î , Ĵ);Y

n
t |At)− logMÎ > log γk,n. (77)

Otherwise, the decoder declares an error.
Recalling the definition of ı̃(Xn

t ;Y
n
t |At) in (14), we obtain

that∑
t∈[Ψ]

ı̃(Xn
t (Î , Ĵ);Y

n
t |At) = −

∑
t∈[Ψ] ∥Y n

t −AtX
n
t (Î , Ĵ)∥22

2

+
∑
t∈[Ψ]

(
n

2
log(1 + PtA

2
t ) +

∥Y n
t ∥22

2(1 + PtA2
t )

)
. (78)

Hence, our decoder in (77) is a universal decoder which
requires knowledge of only the channel outputs {Y n

t }t∈[Ψ],
the fading parameters {At}t∈[Ψ], the channel codebook
{Xn

t (i, j)}(i,j)∈D for each t ∈ [Ψ] and the integers
{Mi}i∈[|Pk(S)|].

3) Analysis of Excess-Distortion Probability: Given our
coding scheme, following the analyses in [26], [27], we can
upper bound the excess-distortion probability by

Pe,k,n(P,D)

≤
∑

i∈[|Pk(S)|]

Pr{Sk ∈ TQi , min
j̃∈[Mi]

d(Sk, Ŝk(i, j̃)) > D}

+
∑

i∈[|Pk(S)|]

Pr{Sk ∈ TQi , (Î , Ĵ) ̸= (i, J)}. (79)

For each i ∈ [|Pk(S)|], let

logMi := kR(Qi, D) + C log k, (80)

where C = 4|S||Ŝ| + 9 (see [35, Eq. (74)]). With this
choice of Mi, invoking the type covering lemma for the lossy
source coding problem [19], [21], [36], we conclude that for
n sufficiently large and any i ∈ [|Pk(S)|,

Pr{Sk ∈ TQi , min
j̃∈[Mi]

d(Sk, Ŝk(i, j̃)) > D} = 0. (81)

For simplicity, given sk ∈ TQi and the i-th subcodebook
ŝi, we use j(sk, ŝi) to denote the index of the codeword in
si which minimizes the distortion with respect to sk. In the
following lemma, we upper bound the error probability of
decoding (i, j(sk, ŝi)) conditioning on sk and si. To present
the lemma, define

B2(P,A) :=
∑
t∈[Ψ]

1 + PtA
2
t√

1 + 2PtA2
t

(
2(1 + PtA

2
t )√

π
√
PtA2

t (PtA2
t + 2)

+
12
√
2PtA

2
t (7PtA

2
t + 12)

(PtA2
t + 2)

√
PtA2

t (PtA2
t + 2)

)
. (82)

It can be verified that under the conditions of Theorem 5, we
have that there exists a constant c6 such that

sup
P∈Peq(P )

E[B2(P,A)] ≤ c6. (83)

Lemma 8. For any i ∈ [|Pk(S)|], given sk ∈ TQi and ŝi, we
obtain that

Pr{(Î , Ĵ) ̸= (i, j(sk, ŝi))|Sk = sk, Ŝi = ŝi}

≤ Pr

{ ∑
t∈[Ψ]

ı̃(Xn
t ;Y

n
t |At) ≤ log γk,n + logMi

}
+

|Pk(S)|EA[B2(P,A)]

γk,n
√
n

. (84)

The proof of Lemma 8 is inspired by the dependence testing
bound [10, Theorem 18] (see also [16, Theorem 1]) and the
analysis of its variant to quasi-static fading channel in [24,
Chapter 4]. The proof of Lemma 8 is available in Appendix
C for completeness.

Using Lemma 8, choosing γk,n = |Pk(S)| ≤ (k + 1)|S|

and applying the Berry-Esseen theorem, we obtain that for
any P ∈ Peq(P ),∑

i∈[|Pk(S)|]

Pr{Sk ∈ TQi , (Î , Ĵ) ̸= (i, J)}

=
∑

i∈[|Pk(S)|]

∑
sk∈TQi

P k
S (s

k)
∑
ŝi

P k
Ŝ|S(ŝ

k|sk)

× Pr{(Î , Ĵ) ̸= (i, j(sk, ŝi))|Sk = sk, Ŝi = ŝi} (85)

≤
∑

i∈[|Pk(S)|]

∑
sk∈TQi

P k
S (s

k) Pr
{ ∑

t∈[Ψ]

ı̃(Xn
t ;Y

n
t |At)

≤ log γk,n + logMi

}
+

|Pk(S)|EA[B2(P,A)]

γk,n
√
n

(86)

= Pr
{ ∑

t∈[Ψ]

ı̃(Xn
t ;Y

n
t |At) ≤ log γk,n + nR(P̂Sk , D)

+ C log k
}
+

|Pk(S)|EA[B2(P,A)]

γk,n
√
n

(87)

≤ Pr
{ ∑

t∈[Ψ]

ı̃(Xn
t ;Y

n
t |At) ≤ |S| log(k + 1) + nR(P̂Sk , D)

+ C log k
}
+

EA[B2(P,A)]√
n

(88)

≤ Pr
{
Sk ∈ T k,

∑
t∈[Ψ]

ı̃(Xn
t ;Y

n
t |At) ≤ |S| log(k + 1)

+ kR(P̂Sk , D) + C log k
}
+ Pr{Sk /∈ T k}

+
EA[B2(P,A)]√

n
(89)

≤ Pr
{ ∑

t∈[Ψ]

Ln
t (Pt, At, Z

n
t ) ≤

∑
i∈[k]

ȷ(Si, D) +O(log k)
}

+
2|S|
k2

+
EA[B2(P,A)]√

n
(90)

= EA

[
Pr
{∑

i∈[k]

(ȷ(Si, D)−R(PX , D))−
∑
t∈[Ψ]

L̃n
t (Pt, At, Z

n)

≥
( ∑

t∈[Ψ]

n

2
log(1 + PtA

2
t )− kR(PS , D)

+O(log k)
)}∣∣∣A]+ 2|S|

k2
+

EA[B2(P,A)]√
n

(91)
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≤ EA

[
Q

(
nU1(P,A)− kR(PS , D) +O(log n)√

kVs(PS , D) + nU2(P,A)

)]
+

Ω1(k, n, P )√
(k + nΨ)

+
2|S|
k2

+
EA[B2(P,A)]√

n
(92)

= EA

[
Q

(
nU1(P,A)− kR(PS , D) +O(log n)√

kVs(PS , D) + nU2(P,A)

)]
+O

( 1√
n

)
(93)

≤ EA

[
Q

(
nU1(P,A)− kR(PS , D)√
kVs(PS , D) + nU2(P,A)

)]
+O

(
log n√

n

)
,

(94)

where (87) follows from the choice of Mi in (87); (90) follows
from Taylor expansion of R(Qi, D) at PS (see [35, Eq. (91)]),
the result in Lemma 2 and [37, Lemma 22]; (91) is similar
to (42); (92) follows by applying the Berry-Esseen theorem
as in (43) and using the definition of Ω1(k, n, P ) in (36) and
assumption that k = O(n), (93) follows from the result in
(83) and the result that Ω1(k, n, P ) = O(1) according to the
assumptions of Theorem 5, and (94) follows similarly to (53)
and (54).

E. Proof of Corollary 6

Combining (52), (73) (or (93)), applying [3, Lemma 17] and
using the definition of outage probability in (31), we have that
the optimal excess-distortion probability P∗

e,k,n in (7) satisfies
that

P∗
e,k,n ≥ inf

P∈Peq(P )
Pr{nU1(P,A)− kR(PS , D) + log n ≤ 0}

+O

(
1√
n

)
, (95)

= Pout(k +O(log n), n,D) +O

(
1√
n

)
, (96)

P∗
e,k,n ≤ inf

P∈Peq(P )
Pr{nU1(P,A)− kR(PS , D) ≤ O(log n)}

+O

(
1√
n

)
(97)

= Pout(k +O(log n), n,D) +O

(
1√
n

)
. (98)

Using the definition of k∗(n, ε, P,D) in (8) and combining
(96), (98), we obtain that when n is sufficient large,

k∗(n, ε, P,D) = nCMC
out (P,D, ε) +O(log n). (99)

VI. CONCLUSION

In this paper, we considered the lossy multi-connectivity
problem, which is a lossy joint source-channel coding problem
over parallel AWGN channels with independent quasi-static
fading. We derived non-asymptotic achievability and con-
verse bounds on the excess-distortion probability for optimal
codes and illustrated our results using numerical examples.
Furthermore, for discrete memoryless sources under bounded
distortion measures, we derived second-order asymptotics for
the optimal excess-distortion probability and the optimal cod-
ing rates. Our results imply that the asymptotic notions of

outage capacity and outage probability are still valid criteria
even in the finite blocklength scenario with negligible loss
of performance. In a nutshell, we demonstrate that in the
lossy multi-connectivity problem, the optimal performance of
URLLC can be well approximated by simple outage analysis.
In future, one can nail down the exact coefficients for the
remainder term scaling in the order of logn

n in Corollary 6. It
is also interesting to derive the finite blocklength performance
when CSI is not provided at the decoder and explore whether
there is a loss of performance compared with the present
setting. Finally, one can also adapt the coding scheme in
[27] to propose a universal JSCC scheme to transmit an
arbitrary memoryless source over parallel additive arbitrary
noise channels with independent quasi-static fading.

APPENDIX

A. Proof of Lemma 2

Recall the distributions PY n
t |Xn

t At
in (13) and QY n

t |At
in

(17). Given any t ∈ [Ψ], channel input xn
t ∈ R(n, Pt) (see (2))

and fading parameter at, using the definition of ı̃(Xn
t ;Y

n
t |At)

and the fact Zn
t = Y n

t −atx
n
t due to the channel law (see (1)),

under the distribution of PY n
t |Xn

t At
(·|xn

t , at), we have

ı̃(xn
t ;Y

n
t |at) =

n

2
log(1 + Pta

2
t )−

∥Zn
t ∥2

2
+

∥Zn
t + atx

n
t ∥2

2(1 + Pta2t )
.

(100)

Hence, the distribution of ı̃(xn
t ;Y

n
t |at) depends on xn

t only
through ∥Zn

t + atx
n
t ∥2. Noting that

∥Zn
t + atx

n
t ∥2 = ∥Zn

t ∥2 + a2t∥xn
t ∥2 + 2

∑
j∈[n]

atxt,jZt,j (101)

= ∥Zn
t ∥2 + nPta

2
t + 2

∑
j∈[n]

atxt,jZt,j , (102)

we conclude that the distribution of ı̃(xn
t ;Y

n
t |at) depends

on xn
t only through

∑
j∈[n] Atxt,jZt,j . Since Zn

t is i.i.d.
according to N (0, 1), we conclude that∑

j∈[n]

atxt,jZt,j ∼ N (0, nPta
2
t ), (103)

independent of the choice of xn
t ∈ R(n, Pt). Therefore,

we conclude that the distribution of ı̃(xn
t ;Y

n
t |at) depends

on xn
t only through its power Pt under PY n

t |Xn
t At

(·|xn
t , at).

It remains to show that ı̃(xn
t ;Y

n
t |at) is distributed as

Ln
t (Pt, At, Z

n
t ). We can now choose xn

t = xn
∗ =

(
√
Pt, . . . ,

√
Pt) for simplicity. With this choice, under the

distribution of PY n
t |Xn

t At
(·|xn

t , at), using the result in (100)
and the definition of Ln

t (Pt, At, Z
n
t ) in (16), we obtain

that ı̃(xn
t ;Y

n
t |at) for any xn

t ∈ R(n, Pt) and any fading
parameter at has the same distribution as ı̃(xn

∗ ;Y
n
t |At) =

Ln
t (Pt, at, Z

n
t ).

B. Proof of Theorem 4

Since the proof of Theorem 4 is similar to [13], we only
emphasize the differences here. Fix an arbitrary real number
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γ > 0. Given any source sequence sk, recalling the definition
of Φ(sk, D) in (19), define

W (sk, D) :=

⌊
nγ

Φ(sk, D)

⌋
. (104)

Codebook generation: For each i ∈ [M ], generate a random
sequence Ŝk(i) i.i.d. according to P ∗

Ŝ
. The collection of these

M recovery sequences form the random source codebook.
Furthermore, for each t ∈ [Ψ] and each i ∈ [M ], generate a
channel codeword Xn

t (i) according to a uniform distribution
over the sphere with radius

√
nPt, i.e.,

PXn
t
(xn

t ) =
1{∥xn

t ∥2 − nPt}
An(

√
nPt)

, (105)

where 1{·} is indicator function and An(r) is the surface area
of an n-dimensional sphere with radius r. The collection of
the nΨ channel codewords form the channel codebook. We
assume that the source and channel codebooks are known
by both the encoder and the decoder. For simplicity, we
will use Ŝ to denote the random source codebook and ŝ a
particular realization. Similarly we will use X and x to denote
the channel codebooks. Recall that we use A to denote the
fading parameters. We will also use a to denote a particular
realization of A.

Encoding: Fix an integer M s.t. W (sk, D) ≤ M for all
sk. Given a source sequence Sk, for each t ∈ [Ψ], the
encoder ft outputs the channel codeword Xn

t (t, j(S
k)) where

j(Sk) := min{m,W (Sk, D)} if d(Sk, Ŝk(m)) ≤ D <
mini∈[m−1] d(S

k, Ŝk(i)) and j(Sk) = M otherwise. The
index j(Sk) can be essentially understood as the minimum
of W (Sk, D) and the index of the source codeword which
first satisfies the distortion requirement D with respect to Sk.

Decoding: Prior to describing the decoding rule, define the
random variable U taking values in [M + 1] as follows:

U :=

{
j(Sk) if d(Sk, Ŝk(j(Sk))) ≤ D
M + 1 otherwise.

(106)

Given channel outputs {Y n
t }t∈[Ψ] and fading parameters

{At}t∈Ψ, the decoder declares Ŝk(Ĵ) as the source estimate
if

Ĵ = argmax
j̄∈[M ]

PU |Ŝ(j̄|Ŝ)
Ψ∏

t=1

PY n
t |Xn

t At
(Y n

t |Xn
t (j̄), At). (107)

Note that the decoder in (107) is similar to a MAP decoder
with the only difference that PU |S(j̄|Ŝ) should be replaced by∏

t∈Ψ PXn
t
(Xn

t (j̄)).
Conditioning on the fading parameters a, the source code-

book ŝ and the channel codebook x, similarly to [13, Eq. (90)],
we can upper bound the excess-distortion probability by

Pe,k,n(P,D|A = a,X = x, Ŝ = ŝ)

≤
∑

u∈[M ]

PU |Ŝ(u|ŝ) Pr

{ ∪
j̄∈[M ]:j̄ ̸=u

{
PU |Ŝ(j̄|ŝ)
PU |Ŝ(u|ŝ)

×
∏Ψ

t=1 PY n
t |Xn

t At
(Y n

t |xn
t (j̄), at)∏Ψ

t=1 PY n
t |Xn

t At
(Y n

t |xn
t (u), at)

≥ 1

}}
+ Pr

PU|Ŝ

{
U > W (Sk, D)|Ŝ = ŝ

}
. (108)

For each t ∈ [Ψ], let PY n
t |At

be induced by the channel
law PY n

t |Xn
t At

, the input distribution PXn
t

and the fading
distribution PA. Using the definition of QY n

t |At
in (17) and

[24, Eq. (4.91)], we obtain that for any t ∈ [Ψ] and any fading
parameter at,

max
yn

PY n
t |At

(ynt |at)
QY n

t |At
(ynt |at)

≤ 1 + Pta
2
t√

1 + 2Pta2t
. (109)

In the remaining part of this subsection, wherever we use
E, we mean the expectation with respect to the following
distribution( ∏

i∈[M ]

P k
S (s

k)
)( ∏

t∈[Ψ]

∏
j∈[M ]

PXn
t
(Xn

t (j))
)( ∏

t∈[Ψ]

PY n
t |Xn

t At

)
.

(110)

Using the definition of W (Sk, D) in (104), combing (108),
(109) and following the analyses in [13, Eq. (91)-(106)], we
can obtain that

Pe,k,n(P,D)

≤ E
[
min

{
1,W (Sk, D)

∏
t∈[Ψ]

PY n
t |At

(Y n
t |At)

PY n
t |Xn

t At
(Y n

t |Xn
t , At)

}]

+ E
[
(1− Φ(Sk, D))W (Sk,D)

]
(111)

≤ E
[
min

{
1,W (Sk, D)

∏
t∈[Ψ]

1 + PtA
2
t√

1 + 2PtA2
t

×
QY n

t |At
(Y n

t |At)

PY n
t |Xn

t At
(Y n

t |Xn
t , At)

}]
+ E

[
(1− Φ(Sk, D))

γ

Φ(Sk,D)
−1
]

(112)

≤ E
[
exp

(
−
∣∣∣∣ ∑
t∈[Ψ]

(
ı̃(Xn

t ;Y
n
t |At)− log

1 + PtA
2
t√

1 + 2PtA2
t

)

− logW (Sk, D)

∣∣∣∣+)]
+ E

[
exp

{
− Φ(Sk, D)

(
nγ

Φ(Sk, D)
− 1

)}]
(113)

= E
[
exp

(
−
∣∣∣∣ ∑
t∈[Ψ]

(
ı̃(Xn

t ;Y
n
t |At)− log

1 + PtA
2
t√

1 + 2PtA2
t

)

− log
nγ

Φ(Sk, D)

∣∣∣∣+)]
+ exp(−nγ + 1) (114)

= E
[
exp

(
−
∣∣∣∣ ∑
t∈[Ψ]

(
Ln
t (Pt, At, Z

n
t )− log

1 + PtA
2
t√

1 + 2PtA2
t

)

− log
nγ

Φ(Sk, D)

∣∣∣∣+)] (115)

+ exp(−nγ + 1), (116)

where (113) follows by using the inequality (1 − a)M ≤
exp(−Ma) for any a ∈ [0, 1], and (116) follows from
Φ(sk, D) ≤ 1 for any sk and the result in Lemma 2
which states that under the distribution PY n

t |Xn
t At

, the fading
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information density ı̃(Xn
t ;Y

n
t |At) has the same distribution

as Ln
t (Pt, At, Z

n
t ).

The proof of Theorem 4 is now completed.

C. Proof of Lemma 8

Recall the definition of D in (75). Given sk ∈ TQi and ŝi,
we obtain that

Pr{(Î , Ĵ) ̸= (i, j(Sk, Ŝi))|Sk = sk, Ŝi = ŝi}

= Pr

{∑
t∈[Ψ]

ı̃(Xn
t (i, j(s

k, ŝi));Y
n
t |At)≤ log γk,n+logMi

}
+ Pr

{
∃ (̄i, j̄) ∈ D : (̄i, j̄) ̸= (i, j(sk, ŝi) s.t.∑

t∈[Ψ]

ı̃(Xn
t (̄i, j̄);Y

n
t |At) > γk,n + logMī

}
, (117)

≤ Pr

{∑
t∈[Ψ]

ı̃(Xn
t (i, j(s

k, ŝi));Y
n
t |At)≤ log γk,n+logMi

}

+
∑

(̄i,j̄)∈D:(̄i,j̄) ̸=(i,j(sk,ŝi)

Pr

{ ∑
t∈[Ψ]

ı̃(Xn
t (̄i, j̄);Y

n
t |At)

> log γk,n + logMī

}
(118)

≤ Pr

{ ∑
t∈[Ψ]

ı̃(Xn
t ;Y

n
t |At) ≤ log γk,n + logMi

}

+

|Pk(S)|∑
ī=1

Mī Pr

{ ∑
t∈[Ψ]

ı̃(Xn
t ; Ȳ

n
t |At)

> log γk,n + logMī

}
(119)

≤ Pr

{ ∑
t∈[Ψ]

ı̃(Xn
t ;Y

n
t |At) ≤ log γk,n + logMi

}
+

|Pk(S)|EA[B2(P,A)]

γk,n
√
n

, (120)

where in (119), for each t ∈ [Ψ], (Xn
t , At, Y

n
t , Ȳ n

t ) ∼
PXn

t
PAtPY n

t |Xn
t At

PY n
t |At

, (119) follows since the channel
output Y n

t = Xn
t (i, j(s

k, ŝi)) + Zn
t is independent of all

codewords Xn
t (̄i, j̄) where (̄i, j̄) ̸= (i, j(sk, ŝi)), and (120)

follows from using the result in [24, Eq. (4.93)] and the
definition of B2(P,A) in (82).
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