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Abstract—The so-called chief executive officer problem sug-
gests that the source message can be recovered at the destination
by merging a set of corrupted replicas forwarded by multiple
relays, as long as these replicas are sufficiently correlated with
the original message. In this work, we build on Slepian-Wolf’s
correlated source coding theorem to design a simple, yet efficient
power allocation scheme for a multirelay system in which the
direct link is unavailable to convey information. In such a system,
the replicas forwarded by the relays are allowed to contain intra-
link errors due to previous unreliable hops, and the destination
is supposed to retrieve the source message by jointly decoding
all received replicas. Importantly, the proposed power allocation
is asymptotically optimal at high signal-to-noise ratio.

Index Terms—CEO problem, distributed source coding, outage
probability, power allocation, relay channel, Slepian-Wolf theo-
rem.

I. INTRODUCTION

In conventional decode-and-forward (DF) relaying systems,
reliable communication is achieved by means of some error-
control mechanism at the relays. Whenever a relay identifies
an uncorrectable error, it simply discards the message and in-
vokes a retransmission [1]. However, discarding an erroneous
message may be less appropriate and effective than forwarding
it to the destination [2]. First, in extreme scenarios such as
under severe environmental disasters or terrorist attacks, the
communication infrastructure may be seriously damaged. In
these cases, intact mobile devices can be used to establish
an emergency mesh network, but the resulting source-relay
links (a.k.a. intra-links) are unusually weak due to power
constraints inherent to those devices, causing errors to be
more frequent. Accordingly, the amount of retransmissions
required by conventional DF schemes may be too large, if
not impracticable. Another application scenario is the harsh
and rapidly-changing propagation environment encountered
in vehicular networks envisaged for fifth-generation wireless
systems. Second and more fundamentally, it has been shown
in [2] that the system performance can be indeed improved
by allowing the intra-link errors (IE) to be forwarded to the
destination. Such a scheme is referred to as DF-IE. The central
idea behind this scheme is that erroneous replicas at the relays
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are still highly correlated with the source message and thus can
be jointly decoded to recover the message at the destination,
instead of being merely discarded.

Some DF-IE relaying networks have been considered in
previous studies. A particular scenario that has been well
investigated is the classic three-node relay system, in which
one source (S) communicates with one destination (D) not only
through a direct link but also with the aid of one intermediate
relay (R). A pioneering DF-IE protocol for such system was
proposed in [2], based on a distributed source coding (DSC)
scheme that exploits the correlation between the source and
relay sequences. In that work, the source-destination (SD) and
relay-destination (RD) links were modeled as block Rayleigh
fading channels, whereas the source-relay (SR) link was
modeled as a binary symmetric channel (BSC) with a certain
bit-flipping probability [3]. The BSC assumption has arisen as
an amalgamated model for lossy multiple hops between the
source and relay. At the relay, a possibly erroneous message
is detected, re-encoded, interleaved, and forwarded to the
destination. Then, at the destination, a joint decoding (JD)
algorithm is applied to retrieve the source message from the
direct- and relaying-link transmissions, by means of a log-
likelihood ratio updating function. A significant improvement
of the decoding performance was observed when compared
with the conventional DF scheme, in which erroneous mes-
sages are thrown away. The performance gain of DF-IE can be
reasoned with use of Slepian-Wolf’s correlated source coding
theorem [4]. Following this approach, in [5], a theoretical
analysis of the outage probability and its asymptotic properties
was carried out for the DF-IE scheme introduced in [2]. After-
wards, the same authors proposed in [6] a corresponding power
allocation strategy that minimizes the outage probability. More
recently, a rigorous and comprehensive outage analysis of
the DF-IE protocol was performed in [7], overcoming two
drawbacks of previous investigations. First, a block Rayleigh
fading model was used not only for the SD and RD links
but also for the SR link, thereby taking into account the
channel fluctuations of all the links. Second, instead of the
Slepian-Wolf theorem, the theorem for source coding with
side information was adopted as the appropriate theoretical
framework to analyze the exact system performance. After
all, in such system the destination is ultimately interested in
recovering only the source sequence, with the relay sequence
being nothing but a helper. On the other hand, it was demon-
strated in [7] that the Slepian-Wolf theorem yields a simple,
yet accurate approximation to the true performance.

In this work, inspired by the results in [5] and [6], we design
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a simple, yet efficient power allocation policy for a DSC/JD
scheme operating over a DF-IE relaying system. Differently
from [5] and [6], we consider a less favorable scenario, in
which no usable direct link is available between source and
destination. This is probably the case in catastrophic envi-
ronments with a severe damage to the network infrastructure,
or in fifth-generation vehicular networks with unfriendly and
highly dynamic propagation conditions, causing source and
destination to be unusually far apart from each other. In
addition, more generally than those works, we consider that
each message is simultaneously transmitted along an arbitrary
number of relay routes (vs. a single relay route). Once again,
this is probably the case in such abnormal environments,
in which these many routes may be required for keeping
connectivity at an acceptable level. Similarly to [5] and [6],
we consider that the links between the source and the relays
are modeled as independent BSCs. It was shown in [8] that
a JD scheme at the destination can exploit the correlation
among the replicas received from multiple relays, and that
a significant performance gain can be attained compared to
conventional coding schemes. However, error-free retrieval of
the original message cannot be achieved [9]. This is known
as the chief executive officer (CEO) problem in network
information theory [10]. A general exact solution to the system
performance is rather intricate and still open. In particular,
for an insightful bound analysis of the Hamming distortion
with two relays, we refer the reader to [11]. Herein, we
relax the problem by conveniently defining a certain outage
event and by computing its probability, the minimization of
which eventually enables us to conceive an efficient power
allocation scheme. As in [6], we capitalize on the Slepian-
Wolf theorem. This is a reasonable framework, since the
various relay sequences can be regarded as mutually correlated
sources of information. However, we show that the scope of
that theorem must be suitably modified to better comply with
the requirements of our application. Based on this modified
framework, we obtain a single-fold integral-form expression
for the outage probability of the particular case with two
relays. More importantly, we obtain a useful closed-form
asymptotic outage expression for the general case with an
arbitrary number of relays. Finally, from this result, we derive
a general, remarkably simple power allocation strategy that is
asymptotically optimal at high signal-to-noise ratio (SNR). To
the best of our knowledge, Slepian-Wolf-based outage analysis
and power allocation design for DF-IE relaying networks have
not been addressed yet in the context of multiple relays or
unavailable direct transmission.

An important remark is in order. As shown in [7], al-
though the Slepian-Wolf theorem serves as an useful analytical
framework to assess the performance of DF-IE systems, such
framework is an approximate one, since the destination is
primarily interested in recovering the source sequence, and
not the relay sequences. Hence, any outage analysis based on
the Slepian-Wolf theorem is inherently approximate, in the
sense that the associated outage and non-outage events do not
rigorously establish the recoverability conditions of the source
message. On the other hand, our primary aim here is far from
developing a rigorous performance analysis, but a tractable and

suitable one that is ultimately employed to devise an efficient
power allocation strategy for the investigated system. So we
have opted for the Slepian-Wolf framework. As shall be seen,
we have tested our power allocation strategy into the practical
DSC/JD scheme introduced in [2]. Strikingly, in all the tests,
the observed bit-error rate (BER) was nearly optimal.

In what follows, Pr[·] denotes probability, fX(·) is the
probability density function (PDF) of a continuous random
variable X , pY (·) is the probability mass function (PMF) of
a discrete random variable Y , H(Y ) is the entropy of Y ,
z is a sample realization of a generic random variable Z,
hb(x) , −x log2(x) − (1 − x) log2(1 − x) is the binary
entropy function, |S| is the cardinality of a set S, B = {0, 1}
is a binary set, and {Ai|i ∈ S} is an indexed series (e.g.,
{Ai|i ∈ {1, 5, 7}} = {A1, A5, A7}).

II. SYSTEM MODEL

We consider a half-duplex dual-hop1 relay system as shown
in Fig. 1. It consists of one source S, one destination D, and N
DF relays F1,F2, . . . ,FN 2. The system operation is based on
the CEO problem. An i.i.d. binary sequence3 B0 is originated
by S with uniform probabilities Pr[B0 = 0] = Pr[B0 = 1] =
0.5. The source sequence is transmitted via N independent
BSCs with associated memoryless binary error sequences Ei,
i ∈ {1, . . . , N}—a representation of the accumulated error
caused by the multiple wireless hops up to the last one. The
PMF of Ei can be written as

pEi(e) = piδ(e− 1) + (1− pi)δ(e), (1)

e ∈ {0, 1}, in which 0 < pi ≤ 0.5 is the bit-flipping probabil-
ity and δ(·) is the discrete delta function. Therefore, the ith
relay Fi observes a sequence Bi = B0 ⊕Ei, i ∈ {1, . . . , N},
with “⊕” denoting the binary exclusive OR operation. Note
that, like the source sequence, all relay sequences are also
uniformly distributed, so that H(Bi) = 1, i ∈ {0, 1, . . . , N}.
In addition, note that the relay sequences B1, . . . , BN are
mutually correlated. Those sequences are transmitted to D over
independent channels undergoing flat Rayleigh fading (RF)
and additive white Gaussian noise with mean power N0. At the
destination, the relay sequences are estimated as B̂1, . . . , B̂N
and, based on these, the source sequence is finally estimated
as B̂0. The PDF of the received instantaneous SNR Γi at the
ith second hop is exponentially distributed, thus given by

fΓi(γi) =
1

Γ̄i
exp(− γi

Γ̄i
), (2)

where Γ̄i is the average SNR, obtained as

Γ̄i = (Pi/N0) · d−ηi , (3)

with Pi being the transmit power at Fi, di being the distance
between Fi and D, and η being the pathloss exponent.

1Recall that in our model the first hop is an amalgamated representation of
possibly multiple hops between the source and each relay.

2The relays have been so denoted to avoid confusion with the transmission
rates introduced in the next section.

3In order to alleviate the notation, we shall drop the time index when
denoting data and error sequences.
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Fig. 1: System model of a multirelay scheme based on the
CEO problem.

III. PRELIMINARIES

Of course, the best recovery of the source message B0 at
the destination is expected to be achieved when all recovered
relay messages B̂1, . . . , B̂N are error-free. However, even in
such a favorable scenario at the second hops, the source
error probability Pr[B̂0 6= B0] cannot be zero, because the
formulation of the CEO problem excludes error-free BSCs at
the first hops (pi > 0,∀i). So far, only a few DSC/JD schemes
for the referred problem have been proposed that exchange
decoding information among the relay sequences as a means
to reduce the source error probability. In particular, the joint
decoder proposed in [12] shows a significant performance gain
when compared to other coding schemes. An exact error-rate
calculation for that joint decoder was provided in [9].

Herein, our aim is not to analyze the source error-rate
performance of any particular DSC/JD scheme for DF-IE
relaying networks. Instead, our aim is to design a general
power allocation strategy that can be successfully employed
to improve the performance of any such scheme. To this
end, from an information-theoretical viewpoint, the system
performance can be reasoned by means of the Slepian-Wolf
correlated source coding theorem [4], because the multiple
relay messages can be regarded as correlated information
sources, each of which resembles to some extent the original
source message.

A. Slepian-Wolf Theorem: the original scope

The Slepian-Wolf theorem states that iff the transmission
rates Ri at the relays, i ∈ {1, . . . , N}, measured in bits per
channel use, satisfy the inequality constraints [4]∑

i∈S
Ri ≥H ({Bi|i ∈ S}|{Bj |j ∈ Sc})

=H (B1, . . . , BN )−H ({Bj |j ∈ Sc}) (4)

for all subsets S ⊆ {1, . . . , N}, then all the relay sequences
B1, . . . , BN can be recovered error-free, with Sc denoting the
complement of S . The set of N -tuples R1, . . . , RN that satisfy
all the constraints in (4) is referred to as the Slepian-Wolf
admissible rate region. We now find this region in terms of
the bit-flipping probabilities of the first hops. Note in (4) that
each constraint is written in terms of (i) the joint entropy of

all the relay sequences and (ii) the joint entropy of a certain
subset {Bj |j ∈ Sc} of relay sequences. Any of these entropies
can be evaluated as special cases of this formula:

H({Bi|i ∈ S}) = −
∑

{bi}∈B|S|
Pr [{Bi|i ∈ S} = {bi}]

× log2 (Pr [{Bi|i ∈ S} = {bi}]) .
(5)

The required probabilities Pr [{Bi|i ∈ S} = {bi}] can be ob-
tained by knowing that the source bits are equally likely and
by recognizing that both B0 = 0 and B0 = 1 may lead to
each possible sample realization of {Bi|i ∈ S}. This gives

Pr [{Bi|i ∈ S} = {bi}] =
1

2

[∏
i∈S

pEi(bi) +
∏
i∈S

p̄Ei(bi)

]
,

(6)
where we have used (i) the independence among the error
sequences and (ii) the auxiliary PMF

p̄Ei(e) , (1− pi)δ(e− 1) + piδ(e), (7)

defined by swapping the probabilities of Ei. Note that (6) is
ultimately given in terms of the bit-flipping probabilities pi
associated with the first hops. Accordingly, using this into (5)
and then into (4), we obtain each rate constraint of the Slepian-
Wolf theorem also in terms of these bit-flipping probabilities.

B. Slepian-Wolf Theorem: a modified scope

In its original scope, the Slepian-Wolf theorem provides
the rate conditions for recovering all relay messages at the
destination. However, from an engineering perspective, this is
not the primary aim. In the investigated system, the destination
is really not interested in recovering all relay messages—
which are possibly erroneous, indeed—, but in merging them
somehow to recover the original source message. Note that
each relay sequence contains a different amount of information
about the source sequence, depending on the channel quality of
the first hop. To gain insight, let us consider two extreme situ-
ations. First, when a first hop is fully unreliable, i.e., if its bit-
flipping probability equals 0.5, then that relay sequence cannot
contain any useful information about the source sequence and
should be just discarded. In such case, it would be nonsense
to impose any rate constraint on the associated second hop.
Second, when a first hop is fully reliable, i.e., if its bit-
flipping probability is zero, then that relay sequence actually
coincides with the source sequence. In such case, it would be
desirable to entirely recover the relay sequence, which calls
for a full rate constraint. These two examples suggest that, in
the general case, an appropriate rate requirement for a given
relay should not depend on the absolute information content
of the relay message (i.e., its entropy), but on how much
of this content concerns the source message (i.e., its mutual
information regarding the source). This can be accomplished
by adapting the Slepian-Wolf theorem accordingly. All in all,
we propose to modify the original scope of that theorem
by replacing each entropy term with a corresponding mutual
information term involving the source message. Specifically,
the transmission rates Ri at the relays, i ∈ {1, . . . , N}, must
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satisfy the inequality constraints∑
i∈S

Ri ≥I ({Bi|i ∈ S};B0|{Bj |j ∈ Sc})

=I (B1, . . . , BN ;B0)− I ({Bj |j ∈ Sc};B0) . (8)

Hereafter, the set of N -tuples R1, . . . , RN that satisfy all the
constraints in (8) is referred to as the modified Slepian-Wolf
admissible rate region. As before, we now find this region in
terms of the bit-flipping probabilities of the first hops. This is
paramount for many derivations that follow. Note in (8) that
each constraint is written in terms of (i) the mutual information
between all relay sequences and the source sequence and (ii)
the mutual information between a certain subset {Bj |j ∈ Sc}
of relay sequences and the source sequence. Any of these
mutual-information terms can be evaluated as special cases
of this formula:

I({Bi|i ∈ S};B0) =H({Bi|i ∈ S})
−H(B0, {Bi|i ∈ S}) + 1, (9)

where H({Bi|i ∈ S}) is defined as in (5) and

H(B0, {Bi|i ∈ S}) =

−
∑

{b0,{bi}}∈B|S|+1

Pr [{B0, {Bi|i ∈ S}} = {b0, {bi}}]

× log2 (Pr [{B0, {Bi|i ∈ S}} = {b0, {bi}}]) . (10)

By knowing that the source bits are equally likely, the re-
quired probabilities Pr [{B0, {Bi|i ∈ S}} = {b0, {bi}}] can be
obtained as

Pr [{B0, {Bi|i ∈ S}} = {b0, {bi}}]

=
1

2

[
δ(b0)

∏
i∈S

pEi(bi) + δ(b0 − 1)
∏
i∈S

p̄Ei(bi)

]
. (11)

Note that (11) is ultimately given in terms of the bit-flipping
probabilities pi associated with the first hops. Accordingly,
using this into (10) and then into (9) and (8), we obtain each
rate constraint of the modified Slepian-Wolf theorem also in
terms of these bit-flipping probabilities. Next we illustrate this
process for the particular case of two relays.

IV. OUTAGE PROBABILITY

In the proposed system, an outage event occurs whenever
the transmission rates R1, . . . , RN fall outside the modified
Slepian-Wolf admissible rate region. This condition means
that, at least for one of the relays, its information content
regarding the source message cannot be entirely recovered
at the destination. The maximum achievable value of Ri is
related to the received SNR Γi by means of [7]

Ri =
1

Rci
log2 (1 + Γi), (12)

where Rci represents the spectrum efficiency associated with
the modulation and channel coding schemes [6]. In many parts
of this work, for simplicity, we shall assume Rci = Rc,∀i.
Using (12), each rate constraint in (8) that defines an outage
event can be mapped into an equivalent SNR constraint. In this

Fig. 2: Modified Slepian-Wolf inadmissible rate region for two
relays.

section, we follow this approach to derive an exact integral-
form expression for the outage probability of the particular
case with two relays. More importantly, we derive a simple
and useful closed-form asymptotic outage expression for the
general case with an arbitrary number of relays, in which
an exact solution proves intractable. In the next section, this
general expression shall be the basis for the design of a power
allocation scheme.

A. Two Relays

Fig. 2 shows the modified inadmissible rate region for
two relays4. It is divided into two areas, with associated
probabilities J2,1 and J2,2. Thus, the outage probability Pout
for two relays can be formulated as

Pout = J2,1 + J2,2. (13)

Substituting (12) into the rate inequalities in (8), J2,1 and
J2,2 can be expressed in terms of SNR constraints as

J2,1 =1− Pr [R1 > I (B1;B0|B2) , R2 > I (B2;B0|B1)]

=1− Pr
[
2Rc1I(B1;B0|B2) − 1 < Γ1 <∞,

2Rc2I(B2;B0|B1) − 1 < Γ2 <∞
]
, (14)

J2,2 =Pr [I (B1;B0|B2) < R1 < I (B1;B0) ,

I (B2;B0|B1) < R2 < I (B1, B2;B0)−R1]

=Pr
[
2Rc1I(B1;B0|B2) − 1 < Γ1 < 2Rc1I(B1;B0) − 1,

2Rc2I(B2;B0|B1) − 1 < Γ2 < (15)

2Rc2I(B1,B2;B0)−Rc2Rc1
log2(Γ1+1) − 1

]
.

These expressions can be evaluated by integrating the joint
PDF fΓ1,Γ2

(γ1, γ2) = fΓ1
(γ1)fΓ2

(γ2) over the corresponding

4Note that I(B1;B0|B2) < I(B1;B0) and I(B2;B0|B1) < I(B2;B0),
because B1 → B0 → B2 form a Markov chain.
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Pout =1− exp

(
−2Rc1I(B1;B0|B2) − 1

Γ̄1
− 2Rc2I(B2;B0|B1) − 1

Γ̄2

)
+

1

Γ̄1
exp

(
−2Rc2I(B2;B0|B1) − 1

Γ̄2

)
×
∫ 2Rc1I(B1;B0)−1

2Rc1I(B1;B0|B2)−1

e
− γ1

Γ̄1

[
1− exp

(
2Rc2I(B1,B2;B0)−Rc2Rc1

log2 (1+γ1)

Γ̄2
+

2Rc2I(B2;B0|B1)

Γ̄2

)]
dγ1, (16)

ranges defined in (14) and (15). This is done in Appendices
A and B. By combining the results therein, Pout can be finally
written in exact single-fold integral form as in (16), shown at
the top of the next page. where I(B1;B0) = 1 − hb(p1),
and I (B1;B0|B2), I (B2;B0|B1), and I (B1, B2;B0) are
obtained from (8)–(11) in terms of the bit-flipping probabilities
p1 and p2 as

I(B1;B0|B2) = h21(p1, p2)− h22(p1, p2) + hb(p2),

I(B2;B0|B1) = h21(p1, p2)− h22(p1, p2) + hb(p1), (17)
I(B1, B2;B0) = h21(p1, p2)− h22(p1, p2) + 1,

where

h21(p1, p2) , −2

2∑
i=1

a21(i) log2(a21(i)), (18)

with

a21(1) , 0.5[p1p2 + (1− p1)(1− p2)],

a21(2) , 0.5[p1(1− p2) + (1− p1)p2],
(19)

and

h22(p1, p2) , −2

4∑
i=1

a22(i) log2(a22(i)), (20)

with

a22(1) , 0.5[p1p2],

a22(2) , 0.5[p1(1− p2)],

a22(3) , 0.5[(1− p1)p2],

a22(4) , 0.5[(1− p1)(1− p2)].

(21)

Although the outage expression in (16) cannot be solved in
exact closed form, a simple asymptotic solution can be derived
at high SNR. This is also done in Appendices A and B for J2,1

and J2,2, respectively, by assuming Rc1 = Rc2 = Rc. From
the results therein, it turns out that the diversity order of J2,2 is
greater than that of J2,1, so that the latter dominates the high-
SNR outage behavior. Accordingly, an asymptotic expression
of Pout for two relays can be written in compact form as

Pout '
C1

Γ̄1
+
C2

Γ̄2
, (22)

where the constants C1 and C2 are defined as

C1 ,2RcI(B1;B0|B2) − 1, (23)

C2 ,2RcI(B2;B0|B1) − 1, (24)

with I (B1;B0|B2) and I (B2;B0|B1) being given in (17) in
terms of the bit-flipping probabilities p1 and p2.

B. N Relays

The same approach can be applied to an arbitrary number
N of relays, by splitting the modified inadmissible rate region
into several parts. The contribution of each part is then
evaluated by integrating the joint PDF of the individual SNRs
over the corresponding range. However, as in the case of two
relays, the resulting outage expression is written in (N − 1)-
fold integral form. On the other hand, here again, a simple
closed-form asymptotic solution at high SNR can be also
obtained for the general case with an arbitrary number of
relays. This is based on the following key result of a pioneering
work in [13]: the asymptotic outage behavior at high SNR is
exclusively determined by the PDF behavior of the SNR in the
vicinity of the origin. In our case, it suffices to consider those
parts of the modified inadmissible rate region that directly
interface with at least one of the coordinate axes. From the
Slepian-Wolf constraints given in (8), the probability mass
JN,1 of the referred parts can be expressed as

JN,1 =1− Pr [R1 > I(B1;B0|B2, . . . , BN ),

R2 > I(B2;B0|B1, . . . , BN ), . . . ,

RN > I (BN ;B0|B1, . . . , BN−1) ] ,

=1− Pr
[
2Rc1I(B1;B0|B2,...,BN ) − 1 < Γ1 <∞,

2Rc2I(B2;B0|B1,...,BN ) − 1 < Γ2 <∞, . . . ,
2RcNI(BN ;B0|B1,...,BN−1) − 1 < ΓN <∞ ] .

(25)

Now, by following the same procedure presented in Appen-
dices A and B for two relays, after some algebraic manip-
ulations, an asymptotic high-SNR expression for the outage
probability Pout of the general case with an arbitrary number
of relays can be finally obtained as

Pout '
N∑
i=1

Ci
Γ̄i
, (26)

where each constant Ci is defined as

Ci , 2RcI(Bi;B0|{Bj ,j 6=i}) − 1, (27)

with the mutual-information terms I(Bi;B0|{Bj , j 6= i}), i ∈
{1, . . . , N}, being computed from (8)–(11) in terms of the
bit-flipping probabilities p1, . . . , pN .

C. Throughput

Although the outage probability is an effective measure for
the likelihood that each transmission succeeds, it does not
capture how much useful information the destination receives
on average per transmission. To capture this, following the
standard approach in the literature, we define the system
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throughput T as the mutual information between the set of
relay sequences B1, . . . , BN and the source sequence B0 times
the non-outage probability, which gives

T = I(B1, . . . , BN ;B0) · (1− Pout), (28)

where I(B1, . . . , BN ;B0) and Pout can be computed by using
the mathematical framework developed heretofore.

It is noteworthy that increasing the number of relays asks for
extra time slots or extra frequency channels to accommodate
the entire relaying traffic. In other words, as the number of
relays increases, the cooperative diversity increases as well,
but the spectral efficiency tends to diminish. This is a very
important trade-off that must be taken into account in any
practical cooperative design. We do not further elaborate on
this topic in this work, as our aim is not to provide a compre-
hensive study of spectral efficiency for the investigated system,
but to provide an efficient power allocation scheme that
maximizes the noise immunity, i.e., that minimizes the bit error
probability. Accordingly, our definition of system throughput
in (28) reflects the average flow of information (bits) not
per second per Hertz, but per transmission—regardless of the
amount of spectrum each transmission process may require.

V. ASYMPTOTICALLY OPTIMAL POWER ALLOCATION

In this section we design a simple power allocation strat-
egy for the multiple relays in order to improve the outage
performance of the investigated system. Despite its simplicity,
the proposed allocation proves highly effective, being asymp-
totically optimal at high SNR. For that reason, we call it
Asymptotically Optimal Power Allocation (AOPA).

Given a total amount of transmit power PT for all relays,
the transmit power at the ith relay is assigned as Pi = αiPT ,
where 0 ≤ αi ≤ 1 is the power allocation coefficient, i ∈
{1, . . . , N}. Of course,

∑N
i=1 αi = 1. Then, from (3), the

average received SNR at the ith second hop can be written as

Γ̄i =
αi PT d

−η
i

N0
. (29)

Our primary aim is to find the set of power allocation
coefficients α1, . . . , αN that minimize Pout, that is,

minimize
α1,...,αN

Pout(α1, . . . , αN )

subject to 0 ≤ αi ≤ 1,∀i, and
N∑
i=1

αi = 1.
(30)

Unfortunately, as seen in the previous section, there exists
no general exact closed-form expression for Pout. Instead, we
propose to minimize the simple asymptotic outage expression
in (26). By using (3), this can be formulated as

minimize
α1,...,αN

N∑
i=1

N0Cid
η
i

PT
· 1

αi

subject to 0 ≤ αi ≤ 1,∀i, and
N∑
i=1

αi = 1,

(31)

where each constant Ci is defined as in (27). This is a convex
optimization problem, as follows. Note that the cost function

is a summation, each component of which being a function
of a single power allocation coefficient. It turns out that the
ith component N0Cid

η
i /(PTαi) is a convex function of the

ith coefficient αi, because N0Cid
η
i /PT ≥ 0 and 1/αi is a

convex function of αi. The proof of convexity is completed
by recognizing that a sum of convex functions is also a convex
function [14]. To find its global minimum, we eliminate the
N th power allocation coefficient αN by incorporating the
constraint

∑N
i=1 αi = 1 into the cost function, which gives

N−1∑
i=1

N0Cid
η
i

PT
· 1

αi
+
N0CNd

η
N

PT
· 1

1−
∑N−1
i=1 αi

. (32)

Then, by differentiating (32) with respect to the remaining set
of power allocation coefficients α1, . . . , αN−1, by equating all
these partial derivatives to zero, and by solving the resulting
system of equations, after some algebraic manipulations omit-
ted here for simplicity, we finally arrive at the AOPA scheme:

α∗i =

√
Ci · dηi∑N

j=1

√
Cj · dηj

, i ∈ {1, . . . , N}. (33)

Note that the proposed power allocation depends ultimately on
the distances di between each relay and the destination, the
path loss exponent η, and the conditional mutual-information
terms I(Bi;B0|{Bj , j 6= i}) between each relay sequence and
the source sequence, which, in turn, are provided in (8)–(11)
in terms of the bit-flipping probabilities of the first hops. Also
note that the solution in (33) inherently complies with the
constraint 0 ≤ αi ≤ 1. This is the main analytical contribution
of this work.

VI. SNR GAIN

In order to examine the SNR gain provided by AOPA
(αi = α∗i ) vs. Equal Power Allocation (EPA), i.e., αi = 1/N ,
we consider the corresponding asymptotic reduction in SNR
while achieving the same outage probability. This is normally
expressed in dB units, as follows:

G[dB] =
[
(PT/N0)EPA, [dB] − (PT/N0)AOPA, [dB]

]
Pout (fixed)

. (34)

Based on (26) and (29), the average transmit SNR of the two
allocation schemes can be asymptotically expressed as

(PT/N0)EPA = N
∑

i
Ci · dηi/Pout ≥ (PT/N0)AOPA

=
∑

i
Ci · dηi/

(
α
∗
iPout

)
. (35)

From (33) and (VI), we can finally evaluate (34) as

G[dB] = 10 log10

 N
∑
i Ci · d

η
i(∑

i

√
Ci · dηi

)2

 ≥ 0. (36)

Here again, observe that the AOPA-over-EPA SNR gain in (36)
depends ultimately on the distances di between each relay and
the destination, the path loss exponent η, and the bit-flipping
probabilities p1, . . . , pN of the first hops.

VII. PRACTICAL APPLICATION

In order to assess the error-rate performance of our AOPA
strategy from a practical viewpoint, we have applied it into the
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(a) (b)

Fig. 3: Block diagram of the DSC/JD scheme: (a) end-to-end system; (b) joint decoder.

DSC/JD scheme introduced in [2]. Fig. 3a shows a block dia-
gram of this scheme, which complies with the DF-IE system
model established in Section II. For clarity, we now present
a brief description of the transmission scheme in [2]. Each
relay sequence Bi is interleaved and encoded by means of a
twofold serially concatenated code. First, a systematic non-
recursive convolutional code (SNRCC) is deployed, followed
by a doped accumulator (ACC), i.e., a memory-1 systematic
recursive convolutional code (SRCC). The ACC is used to
prevent an error floor at the relay decoder [15]. Then, each
coded sequence Xi is transmitted over a block Rayleigh
fading channel, with the received instantaneous SNRs Γi at
the second hops being exponentially distributed, as given in (2)
and (3). Finally, at the destination, B̂0 is estimated by the joint
decoder, as illustrated in Fig. 3b. A soft demapping is initially
applied by calculating the log-likelihood ratio (LLR) LXi from
the received sequence Yi and known channel state information.
Each relay’s decoder runs two matching BCJR algorithms [16].
The JD operation is structured in two main stages: a local
iteration, where each relay sequence is decoded, and a global
iteration, where an exchange of information among all relay
sequences is performed. In this second stage, the LLRs LeBi
are iteratively refreshed by an update function, based on the
knowledge of the bit-flipping probabilities p1, . . . , pN

5. Once
these LLRs stop changing with the iterations, a final estimation
B̂0 is then established by a hard decision over the sum of all
LLRs. For more details on this scheme, please refer to [2]. The
corresponding source error-rate performance when subject to
AOPA shall be presented and discussed in the next section.

VIII. NUMERICAL RESULTS

In this section we evaluate the impact of the our AOPA
policy on the performance of the investigated DF-IE relaying
system, by considering some representative sample scenarios.
The EPA policy, i.e., αi = 1/N , ∀i, is included for compar-
ison. In each scenario, the outage probability is assessed in
an asymptotic fashion, from (26), as well as via Monte Carlo
simulation, whereas the throughput is assessed via simulation
only. For illustration purposes, we assume a binary phase-
shift keying modulation and a channel-code rate of 1/2, so
that Rc = 2. Moreover, we assume η = 4 and a normal-
ized distance 0 < di ≤ 1 between relays and destination.

5The bit-flipping probabilities are assumed to be known at the destination.

We consider two, three, and four relays under a myriad of
configurations for bit-flipping probabilities, relay location, and
average SNR. Most investigated scenarios are listed in Table I,
along with the power allocation coefficients of AOPA and the
corresponding SNR gains with respect to EPA, in terms of both
outage probability and average BER (i.e., source error rate).
The SNR gain is obtained by (36) for the outage probability
and by simulation for BER. Unless otherwise stated, di = 0.5
for all relays.

Fig. 4 shows the outage probability versus the average
system transmit SNR for different numbers of relays under
non-identical bit-flipping probabilities. Note that scenarios 1,
3, and 5—as well as scenarios 2, 4, and 6—corresponding to
two, three, and four relays, respectively, have been chosen
with identical minimum values (best first hops) and iden-
tical maximum values (worst first hops) of the bit-flipping
probabilities. This is to allow for a fair comparison between
different numbers of relays. The following can be observed
from the curves: (i) our asymptotic expression in (26) gives
an excellent match at medium to high SNR; (ii) in all the
cases AOPA outperforms EPA at medium to high SNR; and
(iii) the more dissimilar are the bit-flipping probabilities, the
greater is the SNR gain achieved by AOPA when compared
with EPA. In other words, the SNR gain of AOPA turns out to
be smaller when there is inherently less room for improvement
by reallocating power among the relays, i.e., when the various
relays either have more similar bit-flipping probabilities at the
first hops or are located at more similar distances from the des-
tination or both. Note that this is by no means a drawback of
the proposed allocation policy, which proved nearly optimal in
all scenarios. Instead, this is just a property of the system. That
is, depending on the bit-flipping probabilities and distances
associated with the various relays, the very performance limit
achieved via optimum power allocation happens to be closer to
or farther from the performance achieved under equal-power
allocation. In particular, when the various relays have identical
bit-flipping probabilities and identical distances to destination,
equal-power allocation is indeed optimum. In such a case,
there is obviously no room for further improvement, causing
the SNR gain to be nil.

Fig. 5 depicts the outage probability and throughput versus
the average system transmit SNR for two relays, with a
constant bit-flipping probability p2 = 0.1 at the second relay
and a varying bit-flipping probability p1 ∈ {0.001, 0.01} at
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TABLE I: Bit-flipping probabilities, power allocation coefficients, and SNR gains for the investigated scenarios.

Scenario p1 p2 p3 p4 α1 α2 α3 α4
SNR gain (dB)

in outage
SNR gain (dB)

in BER

1 0.01 0.1 — — 0.824 0.176 — — 1.53 0.98

2 0.001 0.3 — — 0.983 0.017 — — 2.87 2.83

3 0.01 0.06 0.1 — 0.577 0.232 0.191 — 1.04 0.49

4 0.001 0.06 0.3 — 0.881 0.087 0.032 — 3.72 2.18

5 0.01 0.05 0.06 0.1 0.429 0.218 0.201 0.152 0.73 0.39

6 0.001 0.05 0.06 0.3 0.721 0.122 0.116 0.041 3.43 2.24

7 0.001 0.1 — — 0.941 0.059 — — 2.54 —

the first relay. The aim is to find out how the channel quality
of the first hop impacts the performances of EPA and AOPA.
From the curves, we notice that the impact is indeed quite
different in each case. Recall that the smaller is p1, the better
is the channel quality of the first hop. For EPA, the smaller
is p1, the higher is the system throughput, but the higher
as well is the outage probability. This can be understood
as follows. As p1 decreases, using (17), it can be shown
that I (B2;B0|B1) also decreases, whereas I (B1;B0|B2) and
I (B1, B2;B0) increase. Accordingly, using (8), the inequality
constraint R2 ≥ I (B2;B0|B1) becomes more likely, whereas
R1 ≥ I (B1;B0|B2) and R1 + R2 ≥ I (B1, B2;B0) become
less likely. These two trends have opposite effects on the out-
age probability: the former reduces it, but the latter increases it.
From Fig. 5a, it turns out that the overall impact is dominated
by the second trend, since the outage probability is observed
to increase. As for the throughput, given by (28), it depends
on I (B1, B2;B0) and Pout. From our previous discussions,
as p1 decreases, both I (B1, B2;B0) and Pout increase and,
from (28), these two increases prove to have opposite effects
on the throughput. From Fig. 5b, it turns out that the overall
impact is dominated by I (B1, B2;B0), since the throughput
is also observed to increase. In short, for EPA, as a first
hop improves (e.g., as p1 decreases), the throughput improves
as well, but the outage probability deteriorates. In contrast,
for AOPA, as a first hop improves, both the throughput and
the outage probability improve at medium to high SNR, as
shown in Figs. 5a and 5b. This is a major advantage of AOPA
over EPA. It is achieved by suitably distributing the transmit
power among the second hops, in a way that minimizes the
outage probability while counteracting any side effects of the
first hops.

Fig. 6 displays the impact of the relay position on the outage
probability and throughput for two relays and an average
system transmit SNR of PT /N0 = 20 dB. The first relay
is fixed at d1 = 0.5, and the second one is located at
varying distances d2 from the destination, ranging from 0
to 1. Three situations are investigated based on scenario 7:
(a) identical bit-flipping probabilities (p1 = p2 = 0.001), (b)
smallest bit-flipping probability assigned to the relay with a
variable location (p1 = 0.1 and p2 = 0.001), and (c) highest

bit-flipping probability assigned to the relay with a variable
location (p1 = 0.001 and p2 = 0.1). The outage probability is
shown in Fig. 6a and the corresponding AOPA coefficient for
the second relay is shown in Fig. 6b. The following can be
observed from the curves: (i) in all the cases, our asymptotic
outage expression in (26) has an excellent match; (ii) AOPA
outperforms EPA, possibly except at a singular relay location,
for which AOPA and EPA bear identical performances; (iii) the
closer is the relay to the destination, the smaller is the transmit
power allocated to it by AOPA. Regarding the observation (ii),
the balancing distance d2 at which EPA and AOPA perform
identically is, as expected, d2 = d1 = 0.5 when the bit-flipping
probabilities associated with the two relays are identical. On
the other hand, when the bit-flipping probability for the second
relay is smaller/higher than that for the first (fixed) relay, the
balancing distance d2 moves toward/outward the destination.
There is compensation mechanism at play: if a given relay is
moved toward the destination, its second hop tends to improve,
but the AOPA criterion counteracts this by reducing the relay’s
transmit power, keeping an optimal balance between all the
second hops. In particular, for scenario (c), note that the outage
performances of EPA and AOPA are barely affected by the
location of the second relay. This is because in this case the
fixed (first) relay has a much better first hop (much smaller
bit-flipping probability), dominating the performance.

Finally, in Fig. 7, we assess the effectiveness of our AOPA
policy when applied to a given practical DSC/JD scheme,
namely, that one in [2]. To this end, we have used the same
scenarios in Table I, with the following additional simulation
parameters: (a) frame length is 103 bits; (b) number of frames
is 105; (c) random interleaving; (d) generator polynomials of
SNRCC and SRCC are G = ([3, 1])8 and G = ([3, 1]2)8,
respectively; (e) binary phase-shift keying modulation; and (f)
doping ratio of ACC is 1. Note the presence of an error floor in
all BER curves, as widely known and reported in case of lossy
intra-links. From the curves, it can be observed that AOPA
outperforms EPA in all the cases, achieving considerable gains
for some scenarios. In virtue of the error floor, the SNR gains
have been measured, somewhat arbitrarily, at BER = 0.1
for scenarios 2, 4, and 6, and at BER = 0.01 for scenarios
1, 3, and 5. Those gains are listed in Table I. Note in
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Fig. 4: Outage comparison between EPA and AOPA under
non-identical bit-flipping probabilities: (a) two relays; (b) three
relays; (c) four relays. (See Table I for further details.)
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Fig. 5: Performance comparison between EPA and AOPA for
two relays and varying bit-flipping probability at the first relay:
(a) outage probability; (b) throughput.

the table how the SNR gains for BER are fully consistent
with the corresponding SNR gains for the outage probability.
Most importantly, we have empirically verified that the AOPA
performance is practically indistinguishable from that of an
optimal power allocation scheme, assessed via exhaustive
simulation. These results confirm the effectiveness of AOPA
for practical coding schemes, which was our ultimate aim.
They also confirm that our modified scope of the Slepian-
Wolf theorem, introduced here merely as a basis for the
power allocation design, is indeed an appropriate framework
for this task and thus a good performance indicator of the
investigated system.
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Fig. 6: Outage comparison between EPA and AOPA for two
relays and PT /N0 = 20 dB in terms of the distance between
the second relay and destination: (a) outage probability; (b)
AOPA coefficient for the second relay.

IX. FINAL REMARK

In some scenarios, it may be advantageous to share the
second-hop resources among all the relays via an optimized
power allocation scheme, but in other scenarios it may be
advantageous to use only the best relay for transmission—
the relay with the lowest bit-flipping probability at the first
hop. For illustration purposes, in the discussion that follows,
let us assume a time-division multiple access basis at the
second hops, so that the transmission from each relay takes
one time slot.

First, consider scenarios 2, 4, and 6 in Fig. 7, for two,
three, and four relays, respectively. In all these scenarios,
the best relay has a much lower bit-flipping probability than
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Fig. 7: Bit-error rate comparison between EPA and AOPA: (a)
two relays; (b) three relays; (c) four relays.
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the others, namely, p1 = 0.001. As a result, the observed
error floor is virtually identical to the bit-flipping probability
of the best relay, i.e., around BER . 0.001, regardless of
the number N of relays. In such cases, it turns out that a
more efficient, alternative scheme—using the same amount
of total transmit power (PT ) and the same number of time
slots (N )—is to employ only the best relay for transmission.
More specifically, the best relay retransmits its message N
times to the destination, with transmit power PT /N , while
the other relays remain silent. The destination then combines
these replicas, thereby achieving a higher diversity order
(the error rate decreases faster as the SNR increases) when
compared with the multirelay transmission using an optimized
power allocation, while achieving nearly the same error floor
(BER = 0.001, in the examples). We have confirmed this via
simulation results, omitted here for simplicity.

Now, consider scenarios 1, 3, and 5 in Fig. 7, again for two,
three, and four relays, respectively. In all these scenarios, the
best relay has a bit-flipping probability that is less disparate
from the others, namely, p1 = 0.01. In other words, in
comparison to scenarios 2, 4, and 6, the corrupted replicas at
the various relays contain more similar amounts of information
about the source message. As a result, as the number of relays
increases, the observed error floor falls significantly below
the bit-flipping probability of the best relay, achieving around
BER ≈ 0.002 for scenario 5. In contrast, despite its improved
diversity order, the alternative scheme using retransmissions
exclusively from the best relay is clearly unable to reduce the
error floor below the bit-flipping probability assigned to that
relay. Therefore, in such cases, the multirelay transmission is
advantageous. Indeed, exploiting the cooperative diversity by
sharing the total transmit power among various relay routes
is the fundamental principle of communication schemes based
on the CEO problem.

From the above, it is clear that an overall recommendation
on the use of one of, a subset of, or all the available relays
depends ultimately on the relative quality of the multiple
first hops, represented here by the corresponding bit-flipping
probabilities. As a general rule, the more comparable are the
bit-flipping probabilities assigned to the various relays, the
more beneficial is the joint use of all of them. In any case, with
a given set of relays having been chosen for transmission, the
power allocation scheme provided in this work gives a nearly
optimum performance.

X. CONCLUSIONS

In this work, we analyzed a certain outage performance of
a general distributed source coding scheme for a multirelay
system with intra-link errors and no direct path available from
source to destination. More significantly, we capitalized on this
outage analysis to design a simple and highly effective power
allocation policy for the investigated system. The proposed
power allocation was tested into a practical coding scheme.
Strikingly, in all the tests, the resulting error-rate performance
was nearly optimal. Our results and discussions find impor-
tant application to emerging links-on-the-fly technologies for
robust and efficient communications in unpredictable environ-
ments.
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APPENDIX A
EXACT AND HIGH-SNR EXPRESSIONS FOR J2,1

The SNRs Γ1 and Γ2 are mutually independent, with
marginal PDFs given in (2). Using this into (14), and exact
closed-form expression for J2,1 is obtained as

J2,1 =1−
∫ ∞

2Rc1I(B1;B0|B2)−1

∫ ∞
2Rc2I(B2;B0|B1)−1

1

Γ̄1
e
− γ1

Γ̄1
1

Γ̄2
e
− γ2

Γ̄2 dγ2dγ1,

=1−exp

(
−2Rc1I(B1;B0|B2) − 1

Γ̄1
− 2Rc2I(B2;B0|B1) − 1

Γ̄2

)
.

(37)

Assuming Rc1 = Rc2 = Rc, a corresponding high-SNR
expression can be obtained by invoking the approximation
exp(x) ≈ 1− x, x� 1, which gives

J2,1 '
2RcI(B1;B0|B2) − 1

Γ̄1
+

2RcI(B2;B0|B2) − 1

Γ̄2
. (38)

APPENDIX B
EXACT AND HIGH-SNR EXPRESSIONS FOR J2,2

The SNRs Γ1 and Γ2 are mutually independent, with
marginal PDFs given in (2). Using this into (15), and exact
closed-form expression for J2,1 is obtained as

J2,2 =

∫ 2Rc1I(B1;B0)−1

2Rc1I(B1;B0|B2)−1

∫ 2
Rc2I(B1,B2;B0)−Rc2

Rc1
log2 (1+γ1)

−1

2Rc2I(B2;B0|B1)−1

1

Γ̄1
e
− γ1

Γ̄1
1

Γ̄2
e
− γ2

Γ̄2 dγ2dγ1,

=
1

Γ̄1
exp

(
−2Rc2I(B2;B0|B1) − 1

Γ̄2

)∫ 2Rc1I(B1;B0)−1

2Rc1I(B1;B0|B2)−1

e
− γ1

Γ̄1

[
1− exp

(2Rc2I(B1,B2;B0)−Rc2Rc1
log2 (1+γ1)

Γ̄2
+

2Rc2I(B2;B0|B1)

Γ̄2

)]
dγ1. (39)

Assuming Rc1 = Rc2 = Rc, a corresponding high-SNR
expression can be obtained by invoking the approximation
exp(x) ≈ 1− x, x� 1, which gives

J2,2 '
1

Γ̄1Γ̄2

{
2RcI(B1;B0|B2)+RcI(B2;B0|B1)

− 2RcI(B1;B0)+RcI(B2;B0|B1) + 2RcI(B1,B2;B0)

×
[

Ei
(
−2RcI(B1;B0)

Γ̄1

)
− Ei

(
−2RcI(B1;B0|B2)

Γ̄1

)]}
,

(40)



12

where Ei(·) is the exponential integral function.

REFERENCES

[1] M. Dohler and Y. Li, Cooperative Communications: Hardware, Channel
and PHY, 1st ed. Chichester, UK: John Wiley and Sons Ltd, 2010.

[2] K. Anwar and T. Matsumoto, “Accumulator-assisted distributed turbo
codes for relay systems exploiting source-relay correlation,” IEEE
Commun. Lett., vol. 16, no. 7, pp. 1114–1117, Jul. 2012.

[3] J. Garcia-Frias and Y. Zhao, “Near-Shannon/Slepian-Wolf performance
for unknown correlated sources over AWGN channels,” IEEE Trans.
Commun., vol. 53, no. 4, pp. 555–559, Apr. 2005.

[4] D. Slepian and J. Wolf, “Noiseless coding of correlated information
sources,” IEEE Trans. Inf. Theory, vol. 19, no. 4, pp. 471–480, Jul.
1973.

[5] M. Cheng, K. Anwar, and T. Matsumoto, “Outage probability of a
relay strategy allowing intra-link errors utilizing Slepian-Wolf theorem,”
EURASIP J. Adv. Signal Process, vol. 2013, no. 1, pp. 1–12, Feb. 2013.

[6] ——, “Outage based power allocation: Slepian-Wolf relaying view-
point,” in Proc. IEEE Globecom Workshops (GC Wkshps), Atlanta, USA,
9–13 Dec. 2013, pp. 807–811.

[7] X. Zhou, M. Cheng, X. He, and T. Matsumoto, “Exact and approximated
outage probability analyses for decode-and-forward relaying system
allowing intra-link errors,” IEEE Trans. Wireless Commun., vol. 13,
no. 12, pp. 7062–7071, Dec. 2014.

[8] X. Zhou, X. He, K. Anwar, and T. Matsumoto, “Great-CEO : large
scale distributed decision making techniques for wireless chief executive
officer problems,” IEICE Trans. Commun., vol. E95B, no. 12, pp. 3654–
3662, Dec. 2012.

[9] A. Wolf, M. Matthe, and G. Fettweis, “Improved source correlation
estimation in wireless sensor networks,” in Proc. IEEE International
Conference on Communications Workshop (ICCW), London, UK, 8–12
Jun. 2015, pp. 2121–2126.

[10] T. Berger, Z. Zhang, and V. Harish, “The CEO-problem,” IEEE Trans.
Inf. Theory, vol. 42, no. 3, pp. 887–902, May 1996.

[11] X. He, X. Zhou, P. Komulainen, M. Juntti, and T. Matsumoto, “A lower
bound analysis of Hamming distortion for a binary CEO problem with
joint source-channel coding,” IEEE Trans. Commun., vol. 64, no. 1, pp.
343–353, Jan. 2016.

[12] X. He, X. Zhou, K. Anwar, and T. Matsumoto, “Estimation of obser-
vation error probability in wireless sensor networks,” IEEE Commun.
Lett., vol. 17, no. 6, pp. 1073–1076, 2013.

[13] Z. Wang and G. B. Giannakis, “A simple and general parameterization
quantifying performance in fading channels,” IEEE Trans. Commun.,
vol. 51, no. 8, pp. 1389–1398, Aug. 2003.

[14] S. Boyd and L. Vandenberghe, Convex Optimization, 1st ed. Cambridge,
UK: Cambridge Univ. Pr., 2004.

[15] S. Pfletschinger and F. Sanzi, “Error floor removal for bit-interleaved
coded modulation with iterative detection,” IEEE Trans. Wireless Com-
mun., vol. 5, no. 11, pp. 3174–3181, Nov. 2006.

[16] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of
linear codes for minimizing symbol error rate,” IEEE Trans. Inf. Theory,
vol. 20, no. 2, pp. 284–287, Mar. 1974.
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